This is an old revision of the document!


NewOperator

NewOperator(name, …) creates one of the standard operators as described in the section on standard operators.

NewOperator(Nf, Nb, CreationTable) can be used to create any operator of the form: \begin{eqnarray} \nonumber O = && \alpha^{(0,0)} 1 \\ \nonumber + \sum_i && \alpha^{(1,0)}_i a^{\dagger}_i + \alpha^{(0,1)}_i a_i \\ \nonumber + \sum_{i,j} && \alpha^{(2,0)}_{i,j} a^{\dagger}_ia^{\dagger}_j + \alpha^{(1,1)}_{i,j} a^{\dagger}_ia_j + \alpha^{(0,2)}_{i,j} a_ia_j \\ + \sum_{i,j,k} && ... . \end{eqnarray} The format of CreationTable for the above listed operator is: NewOperator(Nf, Nb, whereby_positive_indices_create_a_particle_negative_indices_annihilate_a_particle._index_i_for_0_to_nf-1_label_fermions_from_nf_to_nf_nb_label_bosons._alpha_can_be_either_a_real_or_a_complex_number._newoperator_can_take_a_forth_element_specifying_options, name_liberty) print(O) </code> ==== Result ==== <file Quanty_Output NewOperator.out> Operator: Liberty QComplex = 2 (Real==0 or Complex==1 or Mixed==2) MaxLength = 5 (largest number of product of lader operators) NFermionic modes = 5 (Number of fermionic modes (site, spin, orbital, …) in the one particle basis) NBosonic modes = 0 (Number of bosonic modes (phonon modes, …) in the one particle basis) Operator of Length 0 QComplex = 0 (Real==0 or Complex==1) N = 1 (number of operators of length 0) | 1.000000000000000E+01 Operator of Length 5 QComplex = 1 (Real==0 or Complex==1) N = 1 (number of operators of length 5) C 4 C 3 C 2 C 1 C 0 | 1.000000000000000E+00 1.000000000000000E+00 </file> ===== Table of contents =====