Table of Contents
MeanFieldGroundstate
MeanFieldGroundState($O$, $\rho$, $T$) calculates the ground-state of operator $O$ within mean-field theory, starting from density matrix $\rho$ at temperature $T$. $rho$ stores the expectation values of $a^{\dagger}_{\tau}a^{\phantom{\dagger}}_{\tau'}$, a table of dimensions $NFermion$ by $NFermion$. The operator is expected to consist of: $O^{(0)}$ a constant, $O^{(1)}$ a one particle operator of the form $\sum_{\tau,\tau'} \alpha_{\tau,\tau'} a^{\dagger}_{\tau}a^{\phantom{\dagger}}_{\tau'}$, $O^{(2)}$ a two particle operator of the form $\sum_{\tau,\tau',\tau'',\tau'''} U_{\tau,\tau',\tau'',\tau'''} a^{\dagger}_{\tau}a^{\dagger}_{\tau'}a^{\phantom{\dagger}}_{\tau''}a^{\phantom{\dagger}}_{\tau'''}$.
The two particle operator will be replaced in mean-field, using the Hartree-Fock approximation by: \begin{eqnarray} a^{\dagger}_{i}a^{\dagger}_{j}a^{\phantom{\dagger}}_{k}a^{\phantom{\dagger}}_{l} &\to&\\ \nonumber &-& a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \rangle \\ \nonumber &+& a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \rangle \\ \nonumber &+& a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \rangle \\ \nonumber &-& a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \rangle \\ \nonumber &-& \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \rangle \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \rangle \\ \nonumber &+& \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \rangle \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \rangle \end{eqnarray}
the function MeanFieldGroundState searches for a self consistent solution such that the lowest eigen-state of the mean-field approximated operator has the same density matrix as is used to calculate the operator.
Input
-
$O$ : Operator
-
$rho$ : Matrix (Table of Table of length $O.NF$) of doubles
-
$T$ : Real
Output
-
$rho_{MF}$ : Matrix (Table of Table of length $O.NF$ The self consistent density matrix
-
$E_{MF}$ : The mean-field ground state energy
-
$O_{MF}$ The mean-field approximated operator
Example
description text
Input
- MeanFieldGroundstate.Quanty
dofile("../definitions.Quanty") -- we define an arbitrary operator Opp = -(2*OppSy + OppLy)*(2*OppSy + OppLy) + (2*OppSy + OppLy) + 0.0000001 * OppLy -- and a starting density rho = DensityMatrix(psi1) -- as well as a temperature needed to average over degenerate states T = 0.0001 -- calculate the ground-state in mean-field rhogrd, E, OppMF = MeanFieldGroundState(Opp, rho, T) -- print the resulting density print(Chop(rhogrd)) -- print the ground-state energy print(E) -- print the Hamiltonian in mean-field, i.e. a potential optimized for the ground-state density print(Chop(OppMF)) -- lets compare the eigenstates of Opp and OppMF Npsi=15 -- In order to make sure we have a filling of 2 -- electrons we need to define some restrictions StartRestrictions = {Nf, Nb, {"111111",2,2}} -- We now can create the lowest Npsi eigenstates: psiList = Eigensystem(Opp, StartRestrictions, Npsi) psiListMF = Eigensystem(OppMF, StartRestrictions, Npsi) -- We define a list of some operators to look at their expectation values oppList={Opp, OppMF, OppSy, OppLy} -- after we've created the eigen states we can look -- at a list of their expectation values -- on the left we show the full eigen-states, on the right the eigen-states of the mean-field approximated operator print(" <E> <E> <S_y> <L_y> MF <E> <E> <S_y> <L_y>"); for i=1,#psiList do for j=1,#oppList do io.write(string.format("%7.3f ",Chop(psiList[i]*oppList[j]*psiList[i]))) end io.write(" | ") for j=1,#oppList do io.write(string.format("%7.3f ",Chop(psiListMF[i]*oppList[j]*psiListMF[i]))) end io.write("\n") end
Result
- MeanFieldGroundstate.out
{ { 0.37500001606196 , (-5.3632883498142e-09 + 0.375 I) , (-7.5782580190366e-09 + 0.17677669529663 I) , (-0.17677671801051 + 8.4602858479628e-12 I) , (0.12499998393969 + 1.1964467459925e-11 I) , (5.3539869430386e-09 + 0.125 I) } , { (-5.3632883498142e-09 - 0.375 I) , 0.37499998393804 , (0.17677667258276 + 8.460206504589e-12 I) , (7.5782580958409e-09 + 0.17677669529663 I) , (5.3539868459665e-09 - 0.125 I) , (0.12500001606031 - 1.1964561947813e-11 I) } , { (-7.5782580190366e-09 - 0.17677669529663 I) , (0.17677667258276 - 8.460206504589e-12 I) , 0.24999996787773 , (1.0707423359528e-08 + 0.25 I) , (7.564325232475e-09 + 0.17677669529663 I) , (-0.17677667258276 - 8.4601954064865e-12 I) } , { (-0.17677671801051 - 8.4602858479628e-12 I) , (7.5782580958409e-09 - 0.17677669529663 I) , (1.0707423359528e-08 - 0.25 I) , 0.25000003212227 , (0.17677671801051 - 8.4602042449046e-12 I) , (-7.5643252261757e-09 + 0.17677669529663 I) } , { (0.12499998393969 - 1.1964467459925e-11 I) , (5.3539868459665e-09 + 0.125 I) , (7.564325232475e-09 - 0.17677669529663 I) , (0.17677671801051 + 8.4602042449046e-12 I) , 0.37500001606196 , (-5.3435844501437e-09 + 0.375 I) } , { (5.3539869430386e-09 - 0.125 I) , (0.12500001606031 + 1.1964561947813e-11 I) , (-0.17677667258276 + 8.4601954064865e-12 I) , (-7.5643252261757e-09 - 0.17677669529663 I) , (-5.3435844501437e-09 - 0.375 I) , 0.37499998393804 } } -12.0000001 Operator: Operator QComplex = 1 (Real==0 or Complex==1 or Mixed==2) MaxLength = 2 (largest number of product of lader operators) NFermionic modes = 6 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis) NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis) Operator of Length 2 QComplex = 1 (Real==0 or Complex==1) N = 36 (number of operators of length 2) C 0 A 0 | 1.999999871509219E+00 -5.054768245166573E-25 C 0 A 1 | 4.286855070714231E-08 5.499999999999948E+00 C 0 A 2 | 6.059819870986585E-08 3.535533976643392E+00 C 0 A 3 | 1.817109998858424E-07 3.384084768552549E-11 C 0 A 4 | 1.284874287521554E-07 4.785818575907231E-11 C 0 A 5 | -4.283024376372977E-08 4.999999999999833E-01 C 1 A 0 | 4.286855070714231E-08 -5.499999999999948E+00 C 1 A 1 | 2.000000128490683E+00 3.217037880363704E-25 C 1 A 2 | 1.817109995805311E-07 3.384080224126484E-11 C 1 A 3 | -6.059819876404298E-08 3.535533976643392E+00 C 1 A 4 | -4.283024384034779E-08 -4.999999999999832E-01 C 1 A 5 | -1.284874284745996E-07 -4.785812149118257E-11 C 2 A 0 | 6.059819870986585E-08 -3.535533976643392E+00 C 2 A 1 | 1.817109995805311E-07 -3.384080224126484E-11 C 2 A 2 | 2.000000256978111E+00 2.732361740195914E-25 C 2 A 3 | -8.565938661503036E-08 4.999999999999965E+00 C 2 A 4 | -6.054246758567044E-08 3.535533976643392E+00 C 2 A 5 | -1.817109991364418E-07 -3.384080224126484E-11 C 3 A 0 | 1.817109998858424E-07 -3.384084768552549E-11 C 3 A 1 | -6.059819876404298E-08 -3.535533976643392E+00 C 3 A 2 | -8.565938661503036E-08 -4.999999999999965E+00 C 3 A 3 | 1.999999743021791E+00 -5.054768245166573E-25 C 3 A 4 | -1.817109997748201E-07 -3.384084768552549E-11 C 3 A 5 | 6.054246753149332E-08 3.535533976643392E+00 C 4 A 0 | 1.284874287521554E-07 -4.785818575907231E-11 C 4 A 1 | -4.283024384034779E-08 4.999999999999832E-01 C 4 A 2 | -6.054246758567044E-08 -3.535533976643392E+00 C 4 A 3 | -1.817109997748201E-07 3.384084768552549E-11 C 4 A 4 | 1.999999871509220E+00 -7.122719776549142E-25 C 4 A 5 | 4.278973491884084E-08 5.499999999999948E+00 C 5 A 0 | -4.283024376372977E-08 -4.999999999999833E-01 C 5 A 1 | -1.284874284745996E-07 4.785812149118257E-11 C 5 A 2 | -1.817109991364418E-07 3.384080224126484E-11 C 5 A 3 | 6.054246753149332E-08 -3.535533976643392E+00 C 5 A 4 | 4.278973491884084E-08 -5.499999999999948E+00 C 5 A 5 | 2.000000128490682E+00 -9.188651824014346E-26 <E> <E> <S_y> <L_y> MF <E> <E> <S_y> <L_y> -12.000 -12.000 -1.000 -1.000 | -12.000 -12.000 -1.000 -1.000 -6.000 -6.000 0.000 -2.000 | -6.000 -6.000 0.000 -2.000 -6.000 -6.000 -1.000 0.000 | -6.000 -6.000 -1.000 0.000 -6.000 20.000 1.000 1.000 | -2.000 -2.000 0.000 -1.000 -2.000 -1.737 0.000 -1.000 | -2.000 -2.000 -1.000 1.000 -2.000 -0.263 0.000 -1.000 | -2.000 -0.000 0.000 -1.000 -2.000 14.000 1.000 0.000 | 0.000 4.000 0.000 0.000 -2.000 -2.000 -1.000 1.000 | 0.000 4.000 0.000 0.000 -2.000 14.000 0.000 2.000 | 0.000 4.000 0.000 0.000 -0.000 10.000 1.000 -1.000 | 0.000 8.000 0.000 1.000 0.000 4.000 0.000 0.000 | -0.000 10.000 1.000 -1.000 0.000 4.000 0.000 0.000 | 0.000 10.000 0.000 1.000 0.000 4.000 0.000 0.000 | -2.000 14.000 1.000 0.000 0.000 8.831 0.000 1.000 | -2.000 14.000 0.000 2.000 0.000 9.169 0.000 1.000 | -6.000 20.000 1.000 1.000