Normalize

for a wavefunction psi the method Normalize() will change the overall prefactor of the wavefunction such that $\langle \psi | \psi \rangle=1$.

Example

We can define the following function: $$ |\psi\rangle = \left(a^{\dagger}_0 a^{\dagger}_1 + a^{\dagger}_0 a^{\dagger}_2 + (1+I) a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$ after normalization it becomes $$ |\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$

Input

Example.Quanty
NF=3
NB=0
psi = NewWavefunction(NF, NB, {{"110",1},{"101",1},{"011",(1+I)}})
print(psi)
print("The norm of psi is ",psi*psi)
psi.Normalize()
print(psi)
print("The norm of psi is ",psi*psi)

Result

WaveFunction: Wave Function
QComplex         =          1 (Real==0 or Complex==1)
N                =          3 (Number of basis functions used to discribe psi)
NFermionic modes =          3 (Number of fermions in the one particle basis)
NBosonic modes   =          0 (Number of bosons in the one particle basis)
 
#      pre-factor             +I  pre-factor         Determinant
   1   1.000000000000E+00         0.000000000000E+00       110
   2   1.000000000000E+00         0.000000000000E+00       101
   3   1.000000000000E+00         1.000000000000E+00       011
 
 
The norm of psi is 	4
 
WaveFunction: Wave Function
QComplex         =          1 (Real==0 or Complex==1)
N                =          3 (Number of basis functions used to discribe psi)
NFermionic modes =          3 (Number of fermions in the one particle basis)
NBosonic modes   =          0 (Number of bosons in the one particle basis)
 
#      pre-factor             +I  pre-factor         Determinant
   1   5.000000000000E-01         0.000000000000E+00       110
   2   5.000000000000E-01         0.000000000000E+00       101
   3   5.000000000000E-01         5.000000000000E-01       011
 
 
The norm of psi is 	1

Available methods

Print/export