Table of Contents
Conjugate
For a wavefunction psi, the method psi.Conjugate() will change the wavefunction psi to its complex conjugate.
Example
We can define the following function: $$ |\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$ Its conjugate $\psi^*$ can be calculate with the command psi.Conjugate() and is equal to: $$ |\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1-I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$
Input
- Example.Quanty
NF=3 NB=0 psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+I)*sqrt(1/4)}}) print(psi) psi.Conjugate() print(psi)
Result
WaveFunction: Wave Function QComplex = 1 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor +I pre-factor Determinant 1 5.000000000000E-01 0.000000000000E+00 110 2 5.000000000000E-01 0.000000000000E+00 101 3 5.000000000000E-01 5.000000000000E-01 011 WaveFunction: Wave Function QComplex = 1 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor +I pre-factor Determinant 1 5.000000000000E-01 -0.000000000000E+00 110 2 5.000000000000E-01 -0.000000000000E+00 101 3 5.000000000000E-01 -5.000000000000E-01 011