Table of Contents
Orientation 0sqrt21z
Symmetry Operations
In the Oh Point Group, with orientation 0sqrt21z there are the following symmetry operations
Operator | Orientation |
---|---|
$\text{E}$ | $\{0,0,0\}$ , |
$C_3$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , $\left\{\sqrt{6},\sqrt{2},1\right\}$ , $\left\{0,2 \sqrt{2},-1\right\}$ , $\left\{\sqrt{6},-\sqrt{2},-1\right\}$ , $\left\{-\sqrt{6},-\sqrt{2},-1\right\}$ , $\left\{0,-2 \sqrt{2},1\right\}$ , $\left\{-\sqrt{6},\sqrt{2},1\right\}$ , |
$C_2$ | $\{1,0,0\}$ , $\left\{1,\sqrt{3},0\right\}$ , $\left\{1,-\sqrt{3},0\right\}$ , $\left\{0,1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,2 \sqrt{2}\right\}$ , $\left\{-\sqrt{3},1,2 \sqrt{2}\right\}$ , |
$C_4$ | $\left\{0,\sqrt{2},1\right\}$ , $\left\{0,-\sqrt{2},-1\right\}$ , $\left\{\sqrt{3},-1,\sqrt{2}\right\}$ , $\left\{-\sqrt{3},-1,\sqrt{2}\right\}$ , $\left\{-\sqrt{3},1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,-\sqrt{2}\right\}$ , |
$C_2$ | $\left\{0,\sqrt{2},1\right\}$ , $\left\{-\sqrt{3},1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,-\sqrt{2}\right\}$ , |
$\text{i}$ | $\{0,0,0\}$ , |
$S_4$ | $\left\{0,\sqrt{2},1\right\}$ , $\left\{0,-\sqrt{2},-1\right\}$ , $\left\{\sqrt{3},-1,\sqrt{2}\right\}$ , $\left\{-\sqrt{3},-1,\sqrt{2}\right\}$ , $\left\{-\sqrt{3},1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,-\sqrt{2}\right\}$ , |
$S_6$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , $\left\{\sqrt{6},\sqrt{2},1\right\}$ , $\left\{0,2 \sqrt{2},-1\right\}$ , $\left\{\sqrt{6},-\sqrt{2},-1\right\}$ , $\left\{-\sqrt{6},-\sqrt{2},-1\right\}$ , $\left\{0,-2 \sqrt{2},1\right\}$ , $\left\{-\sqrt{6},\sqrt{2},1\right\}$ , |
$\sigma _h$ | $\left\{0,\sqrt{2},1\right\}$ , $\left\{-\sqrt{3},1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,-\sqrt{2}\right\}$ , |
$\sigma _d$ | $\{1,0,0\}$ , $\left\{1,\sqrt{3},0\right\}$ , $\left\{1,-\sqrt{3},0\right\}$ , $\left\{0,1,-\sqrt{2}\right\}$ , $\left\{\sqrt{3},1,2 \sqrt{2}\right\}$ , $\left\{-\sqrt{3},1,2 \sqrt{2}\right\}$ , |
Different Settings
Character Table
$ $ | $ \text{E} \,{\text{(1)}} $ | $ C_3 \,{\text{(8)}} $ | $ C_2 \,{\text{(6)}} $ | $ C_4 \,{\text{(6)}} $ | $ C_2 \,{\text{(3)}} $ | $ \text{i} \,{\text{(1)}} $ | $ S_4 \,{\text{(6)}} $ | $ S_6 \,{\text{(8)}} $ | $ \sigma_h \,{\text{(3)}} $ | $ \sigma_d \,{\text{(6)}} $ |
---|---|---|---|---|---|---|---|---|---|---|
$ A_{1g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ |
$ A_{2g} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ |
$ E_g $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 0 $ | $ 2 $ | $ 2 $ | $ 0 $ | $ -1 $ | $ 2 $ | $ 0 $ |
$ T_{1g} $ | $ 3 $ | $ 0 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 3 $ | $ 1 $ | $ 0 $ | $ -1 $ | $ -1 $ |
$ T_{2g} $ | $ 3 $ | $ 0 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 3 $ | $ -1 $ | $ 0 $ | $ -1 $ | $ 1 $ |
$ A_{1u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ |
$ A_{2u} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ |
$ E_u $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 0 $ | $ 2 $ | $ -2 $ | $ 0 $ | $ 1 $ | $ -2 $ | $ 0 $ |
$ T_{1u} $ | $ 3 $ | $ 0 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ -3 $ | $ -1 $ | $ 0 $ | $ 1 $ | $ 1 $ |
$ T_{2u} $ | $ 3 $ | $ 0 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -3 $ | $ 1 $ | $ 0 $ | $ 1 $ | $ -1 $ |
Product Table
$ $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ T_{1g} $ | $ T_{2g} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ T_{1u} $ | $ T_{2u} $ |
---|---|---|---|---|---|---|---|---|---|---|
$ A_{1g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ T_{1g} $ | $ T_{2g} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ T_{1u} $ | $ T_{2u} $ |
$ A_{2g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ T_{2g} $ | $ T_{1g} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ T_{2u} $ | $ T_{1u} $ |
$ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ | $ T_{1g}+T_{2g} $ | $ T_{1g}+T_{2g} $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ | $ T_{1u}+T_{2u} $ | $ T_{1u}+T_{2u} $ |
$ T_{1g} $ | $ T_{1g} $ | $ T_{2g} $ | $ T_{1g}+T_{2g} $ | $ A_{1g}+E_g+T_{1g}+T_{2g} $ | $ A_{2g}+E_g+T_{1g}+T_{2g} $ | $ T_{1u} $ | $ T_{2u} $ | $ T_{1u}+T_{2u} $ | $ A_{1u}+E_u+T_{1u}+T_{2u} $ | $ A_{2u}+E_u+T_{1u}+T_{2u} $ |
$ T_{2g} $ | $ T_{2g} $ | $ T_{1g} $ | $ T_{1g}+T_{2g} $ | $ A_{2g}+E_g+T_{1g}+T_{2g} $ | $ A_{1g}+E_g+T_{1g}+T_{2g} $ | $ T_{2u} $ | $ T_{1u} $ | $ T_{1u}+T_{2u} $ | $ A_{2u}+E_u+T_{1u}+T_{2u} $ | $ A_{1u}+E_u+T_{1u}+T_{2u} $ |
$ A_{1u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ T_{1u} $ | $ T_{2u} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ T_{1g} $ | $ T_{2g} $ |
$ A_{2u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ T_{2u} $ | $ T_{1u} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ T_{2g} $ | $ T_{1g} $ |
$ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ | $ T_{1u}+T_{2u} $ | $ T_{1u}+T_{2u} $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ | $ T_{1g}+T_{2g} $ | $ T_{1g}+T_{2g} $ |
$ T_{1u} $ | $ T_{1u} $ | $ T_{2u} $ | $ T_{1u}+T_{2u} $ | $ A_{1u}+E_u+T_{1u}+T_{2u} $ | $ A_{2u}+E_u+T_{1u}+T_{2u} $ | $ T_{1g} $ | $ T_{2g} $ | $ T_{1g}+T_{2g} $ | $ A_{1g}+E_g+T_{1g}+T_{2g} $ | $ A_{2g}+E_g+T_{1g}+T_{2g} $ |
$ T_{2u} $ | $ T_{2u} $ | $ T_{1u} $ | $ T_{1u}+T_{2u} $ | $ A_{2u}+E_u+T_{1u}+T_{2u} $ | $ A_{1u}+E_u+T_{1u}+T_{2u} $ | $ T_{2g} $ | $ T_{1g} $ | $ T_{1g}+T_{2g} $ | $ A_{2g}+E_g+T_{1g}+T_{2g} $ | $ A_{1g}+E_g+T_{1g}+T_{2g} $ |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the Oh Point group with orientation 0sqrt21z the form of the expansion coefficients is:
Expansion
$$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ i \sqrt{\frac{10}{7}} A(4,0) & k=4\land (m=-3\lor m=3) \\ A(4,0) & k=4\land m=0 \\ -\frac{1}{8} \sqrt{\frac{77}{3}} A(6,0) & k=6\land (m=-6\lor m=6) \\ -\frac{1}{4} i \sqrt{\frac{35}{6}} A(6,0) & k=6\land (m=-3\lor m=3) \\ A(6,0) & k=6\land m=0 \end{cases}$$
Input format suitable for Mathematica (Quanty.nb)
- Akm_Oh_0sqrt21z.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {I*Sqrt[10/7]*A[4, 0], k == 4 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[77/3]*A[6, 0])/8, k == 6 && (m == -6 || m == 6)}, {(-I/4)*Sqrt[35/6]*A[6, 0], k == 6 && (m == -3 || m == 3)}, {A[6, 0], k == 6 && m == 0}}, 0]
Input format suitable for Quanty
- Akm_Oh_0sqrt21z.Quanty
Akm = {{0, 0, A(0,0)} , {4, 0, A(4,0)} , {4,-3, (I)*((sqrt(10/7))*(A(4,0)))} , {4, 3, (I)*((sqrt(10/7))*(A(4,0)))} , {6, 0, A(6,0)} , {6,-3, (-1/4*I)*((sqrt(35/6))*(A(6,0)))} , {6, 3, (-1/4*I)*((sqrt(35/6))*(A(6,0)))} , {6,-6, (-1/8)*((sqrt(77/3))*(A(6,0)))} , {6, 6, (-1/8)*((sqrt(77/3))*(A(6,0)))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$
we can express the operator as $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter.
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ {Y_{0}^{(0)}} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) $ | $ 0 $ |
$ {Y_{0}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ |
$ {Y_{1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{-2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{5}{21} i \sqrt{2} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{0}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{5}{21} i \sqrt{2} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{5}{21} i \sqrt{2} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{35}{156} \text{Aff}(6,0) $ |
$ {Y_{-2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{-1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) $ | $ 0 $ |
$ {Y_{0}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{11} i \sqrt{10} \text{Aff}(4,0)+\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) $ |
$ {Y_{1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{2}{33} i \sqrt{5} \text{Aff}(4,0)-\frac{35}{572} i \sqrt{5} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{35}{572} i \sqrt{5} \text{Aff}(6,0)-\frac{2}{33} i \sqrt{5} \text{Aff}(4,0) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ |
$ {Y_{3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{35}{156} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ -\frac{1}{11} i \sqrt{10} \text{Aff}(4,0)-\frac{35}{858} i \sqrt{\frac{5}{2}} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ 1 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 1 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{\sqrt{2}\text{xz}-\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{i}{\sqrt{6}} $ | $ \frac{1}{\sqrt{3}} $ | $ 0 $ | $ -\frac{1}{\sqrt{3}} $ | $ \frac{i}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\left.y^2-x^2+2\sqrt{2}\text{yz}\right)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{\sqrt{6}} $ | $ \frac{i}{\sqrt{3}} $ | $ 0 $ | $ \frac{i}{\sqrt{3}} $ | $ -\frac{1}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{xz}-\sqrt{2}\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{i}{\sqrt{3}} $ | $ -\frac{1}{\sqrt{6}} $ | $ 0 $ | $ \frac{1}{\sqrt{6}} $ | $ \frac{i}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{y^2-x^2-\sqrt{2}\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{\sqrt{3}} $ | $ -\frac{i}{\sqrt{6}} $ | $ 0 $ | $ -\frac{i}{\sqrt{6}} $ | $ -\frac{1}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 1 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{\left.-3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{i \sqrt{2}}{3} $ | $ 0 $ | $ 0 $ | $ \frac{\sqrt{5}}{3} $ | $ 0 $ | $ 0 $ | $ -\frac{i \sqrt{2}}{3} $ |
$ f_{\left\backslash x\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ -\frac{1}{2 \sqrt{3}} $ | $ 0 $ | $ \frac{1}{2 \sqrt{3}} $ | $ -\frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ 0 $ |
$ f_{y+\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z-\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{\sqrt{\frac{5}{3}}}{2} $ | $ -\frac{i}{2 \sqrt{3}} $ | $ 0 $ | $ -\frac{i}{2 \sqrt{3}} $ | $ \frac{\sqrt{\frac{5}{3}}}{2} $ | $ 0 $ |
$ f_{\left.15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{3} i \sqrt{\frac{5}{2}} $ | $ 0 $ | $ 0 $ | $ \frac{2}{3} $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{5}{2}} $ |
$ f_{-x\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{i}{2 \sqrt{3}} $ | $ -\frac{\sqrt{\frac{5}{3}}}{2} $ | $ 0 $ | $ \frac{\sqrt{\frac{5}{3}}}{2} $ | $ \frac{i}{2 \sqrt{3}} $ | $ 0 $ |
$ f_{y-\left.\sqrt{2}\backslash x^2\right\backslash z+\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{2 \sqrt{3}} $ | $ -\frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ 0 $ | $ -\frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ -\frac{1}{2 \sqrt{3}} $ | $ 0 $ |
$ f_{x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
$ $ | $ \text{s} $ | $ p_x $ | $ p_y $ | $ p_z $ | $ d_{\sqrt{2}\text{xz}-\text{xy}} $ | $ d_{\left.y^2-x^2+2\sqrt{2}\text{yz}\right)} $ | $ d_{\text{xz}-\sqrt{2}\text{xy}} $ | $ d_{y^2-x^2-\sqrt{2}\text{yz}} $ | $ d_{3z^2-r^2} $ | $ f_{\left.-3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} $ | $ f_{\left\backslash x\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.\right.} $ | $ f_{y+\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z-\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $ f_{\left.15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} $ | $ f_{-x\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} $ | $ f_{y-\left.\sqrt{2}\backslash x^2\right\backslash z+\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $ f_{x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{\sqrt{2}\text{xz}-\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\left.y^2-x^2+2\sqrt{2}\text{yz}\right)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)-\frac{3}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{xz}-\sqrt{2}\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{y^2-x^2-\sqrt{2}\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{\left.-3\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y+\sqrt{2}\backslash y^3-3\backslash z+5\left\backslash z^3\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)+\frac{6}{11} \text{Aff}(4,0)+\frac{45}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{\left\backslash x\left\backslash \left(1+\left.\left.10\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z-5\left\backslash z^2\right.\right)\right.\right.} $ | $\color{darkred}{ 0 }$ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{y+\left.5\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash z-\left.5\left\backslash \sqrt{2}\right.\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{\left.15\left\backslash \sqrt{2}\right.\backslash x^2\right\backslash y-5\left\backslash \sqrt{2}\right.\backslash y^3+4\backslash z\left\backslash \left(-3+5\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{2 \text{Apf}(4,0)}{\sqrt{21}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{3}{11} \text{Aff}(4,0)+\frac{75}{572} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{-x\left\backslash \left(-1+\left.\left.2\left\backslash \sqrt{2}\right.\right\backslash y\right\backslash z+5\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ |
$ f_{y-\left.\sqrt{2}\backslash x^2\right\backslash z+\left.\sqrt{2}\backslash y^2\right\backslash z-5\backslash y\left\backslash z^2\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) $ | $ 0 $ |
$ f_{x\left\backslash \left(x^2-3\left\backslash y^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{135}{572} \text{Aff}(6,0) $ |
Coupling for a single shell
Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for p-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C$\infty$v | D$\infty$h |