Table of Contents
Orientation 111
This orientation is non-standard, but related to the orientation of the Oh pointgroup, which normally would be orrientated with the C3 axes in the 111 direction. We only show one of the options of the D3d subgroups of the Oh group with orientation XYZ.
Symmetry Operations
In the D3d Point Group, with orientation 111 there are the following symmetry operations
Operator | Orientation |
---|---|
$\text{E}$ | $\{0,0,0\}$ , |
$C_3$ | $\{1,1,1\}$ , $\{-1,-1,-1\}$ , |
$C_2$ | $\{1,-1,0\}$ , $\{0,1,-1\}$ , $\{1,0,-1\}$ , |
$\text{i}$ | $\{0,0,0\}$ , |
$S_6$ | $\{1,1,1\}$ , $\{-1,-1,-1\}$ , |
$\sigma _d$ | $\{1,-1,0\}$ , $\{0,1,-1\}$ , $\{1,0,-1\}$ , |
Different Settings
Character Table
$ $ | $ \text{E} \,{\text{(1)}} $ | $ C_3 \,{\text{(2)}} $ | $ C_2 \,{\text{(3)}} $ | $ \text{i} \,{\text{(1)}} $ | $ S_6 \,{\text{(2)}} $ | $ \sigma_d \,{\text{(3)}} $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ |
$ A_{2g} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ |
$ E_g $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 2 $ | $ -1 $ | $ 0 $ |
$ A_{1u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ |
$ A_{2u} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ 1 $ |
$ E_u $ | $ 2 $ | $ -1 $ | $ 0 $ | $ -2 $ | $ 1 $ | $ 0 $ |
Product Table
$ $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
$ A_{2g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ |
$ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ |
$ A_{1u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ |
$ A_{2u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ |
$ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the D3d Point group with orientation 111 the form of the expansion coefficients is:
Expansion
$$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -i A(2,1) & k=2\land m=-2 \\ (-1-i) A(2,1) & k=2\land m=-1 \\ (1-i) A(2,1) & k=2\land m=1 \\ i A(2,1) & k=2\land m=2 \\ \sqrt{\frac{5}{14}} A(4,0) & k=4\land (m=-4\lor m=4) \\ (-1+i) \sqrt{7} A(4,1) & k=4\land m=-3 \\ 2 i \sqrt{2} A(4,1) & k=4\land m=-2 \\ (-1-i) A(4,1) & k=4\land m=-1 \\ A(4,0) & k=4\land m=0 \\ (1-i) A(4,1) & k=4\land m=1 \\ -2 i \sqrt{2} A(4,1) & k=4\land m=2 \\ (1+i) \sqrt{7} A(4,1) & k=4\land m=3 \\ -\frac{1}{33} i \left(8 \sqrt{22} A(6,1)-\sqrt{55} B(6,2)\right) & k=6\land m=-6 \\ -\frac{(1+i) \left(A(6,1)+2 \sqrt{10} B(6,2)\right)}{\sqrt{66}} & k=6\land m=-5 \\ -\sqrt{\frac{7}{2}} A(6,0) & k=6\land (m=-4\lor m=4) \\ \left(\frac{1}{6}-\frac{i}{6}\right) \left(\sqrt{10} A(6,1)-4 B(6,2)\right) & k=6\land m=-3 \\ -i B(6,2) & k=6\land m=-2 \\ (-1-i) A(6,1) & k=6\land m=-1 \\ A(6,0) & k=6\land m=0 \\ (1-i) A(6,1) & k=6\land m=1 \\ i B(6,2) & k=6\land m=2 \\ \left(-\frac{1}{6}-\frac{i}{6}\right) \left(\sqrt{10} A(6,1)-4 B(6,2)\right) & k=6\land m=3 \\ \frac{(1-i) \left(A(6,1)+2 \sqrt{10} B(6,2)\right)}{\sqrt{66}} & k=6\land m=5 \\ \frac{1}{33} i \left(8 \sqrt{22} A(6,1)-\sqrt{55} B(6,2)\right) & k=6\land m=6 \end{cases}$$
Input format suitable for Mathematica (Quanty.nb)
- Akm_D3d_111.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*A[2, 1], k == 2 && m == -2}, {(-1 - I)*A[2, 1], k == 2 && m == -1}, {(1 - I)*A[2, 1], k == 2 && m == 1}, {I*A[2, 1], k == 2 && m == 2}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}, {(-1 + I)*Sqrt[7]*A[4, 1], k == 4 && m == -3}, {(2*I)*Sqrt[2]*A[4, 1], k == 4 && m == -2}, {(-1 - I)*A[4, 1], k == 4 && m == -1}, {A[4, 0], k == 4 && m == 0}, {(1 - I)*A[4, 1], k == 4 && m == 1}, {(-2*I)*Sqrt[2]*A[4, 1], k == 4 && m == 2}, {(1 + I)*Sqrt[7]*A[4, 1], k == 4 && m == 3}, {(-I/33)*(8*Sqrt[22]*A[6, 1] - Sqrt[55]*B[6, 2]), k == 6 && m == -6}, {((-1 - I)*(A[6, 1] + 2*Sqrt[10]*B[6, 2]))/Sqrt[66], k == 6 && m == -5}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {(1/6 - I/6)*(Sqrt[10]*A[6, 1] - 4*B[6, 2]), k == 6 && m == -3}, {(-I)*B[6, 2], k == 6 && m == -2}, {(-1 - I)*A[6, 1], k == 6 && m == -1}, {A[6, 0], k == 6 && m == 0}, {(1 - I)*A[6, 1], k == 6 && m == 1}, {I*B[6, 2], k == 6 && m == 2}, {(-1/6 - I/6)*(Sqrt[10]*A[6, 1] - 4*B[6, 2]), k == 6 && m == 3}, {((1 - I)*(A[6, 1] + 2*Sqrt[10]*B[6, 2]))/Sqrt[66], k == 6 && m == 5}, {(I/33)*(8*Sqrt[22]*A[6, 1] - Sqrt[55]*B[6, 2]), k == 6 && m == 6}}, 0]
Input format suitable for Quanty
- Akm_D3d_111.Quanty
Akm = {{0, 0, A(0,0)} , {2,-1, (-1+-1*I)*(A(2,1))} , {2, 1, (1+-1*I)*(A(2,1))} , {2,-2, (-I)*(A(2,1))} , {2, 2, (I)*(A(2,1))} , {4, 0, A(4,0)} , {4,-1, (-1+-1*I)*(A(4,1))} , {4, 1, (1+-1*I)*(A(4,1))} , {4, 2, (-2*I)*((sqrt(2))*(A(4,1)))} , {4,-2, (2*I)*((sqrt(2))*(A(4,1)))} , {4,-3, (-1+1*I)*((sqrt(7))*(A(4,1)))} , {4, 3, (1+1*I)*((sqrt(7))*(A(4,1)))} , {4,-4, (sqrt(5/14))*(A(4,0))} , {4, 4, (sqrt(5/14))*(A(4,0))} , {6, 0, A(6,0)} , {6,-1, (-1+-1*I)*(A(6,1))} , {6, 1, (1+-1*I)*(A(6,1))} , {6,-2, (-I)*(B(6,2))} , {6, 2, (I)*(B(6,2))} , {6, 3, (-1/6+-1/6*I)*((sqrt(10))*(A(6,1)) + (-4)*(B(6,2)))} , {6,-3, (1/6+-1/6*I)*((sqrt(10))*(A(6,1)) + (-4)*(B(6,2)))} , {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6,-5, (-1+-1*I)*((1/(sqrt(66)))*(A(6,1) + (2)*((sqrt(10))*(B(6,2)))))} , {6, 5, (1+-1*I)*((1/(sqrt(66)))*(A(6,1) + (2)*((sqrt(10))*(B(6,2)))))} , {6,-6, (-1/33*I)*((8)*((sqrt(22))*(A(6,1))) + (-1)*((sqrt(55))*(B(6,2))))} , {6, 6, (1/33*I)*((8)*((sqrt(22))*(A(6,1))) + (-1)*((sqrt(55))*(B(6,2))))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$
we can express the operator as $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter.
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ {Y_{0}^{(0)}} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i \text{Asd}(2,1)}{\sqrt{5}} $ | $ -\frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} $ | $ 0 $ | $ \frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} $ | $ -\frac{i \text{Asd}(2,1)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0) $ | $ \left(-\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) $ | $ \frac{1}{5} i \sqrt{6} \text{App}(2,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) $ | $ \frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ \frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) $ | $ -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) $ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) $ | $ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ |
$ {Y_{0}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) $ | $ \text{App}(0,0) $ | $ \left(\frac{1}{5}+\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) $ | $ i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) $ | $ \left(-\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) $ | $ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ \left(\frac{2}{5}+\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) $ | $ \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) $ |
$ {Y_{1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{5} i \sqrt{6} \text{App}(2,1) $ | $ \left(\frac{1}{5}-\frac{i}{5}\right) \sqrt{3} \text{App}(2,1) $ | $ \text{App}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) $ | $ \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ (1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} $ | $ -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) $ |
$ {Y_{-2}^{(2)}} $ | $ -\frac{i \text{Asd}(2,1)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $ | $ \left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) $ | $ \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) $ | $ \frac{5}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(2)}} $ | $ -\frac{(1+i) \text{Asd}(2,1)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1) $ | $ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $ | $ \left(-\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \frac{1}{7} i \sqrt{6} \text{Add}(2,1)-\frac{8}{21} i \sqrt{5} \text{Add}(4,1) $ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{0}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \left(-\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)-\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $ \left(\frac{1}{7}+\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \frac{2}{7} i \text{Add}(2,1)+\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{1}^{(2)}} $ | $ \frac{(1-i) \text{Asd}(2,1)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) $ | $ \frac{8}{21} i \sqrt{5} \text{Add}(4,1)-\frac{1}{7} i \sqrt{6} \text{Add}(2,1) $ | $ \left(\frac{1}{7}-\frac{i}{7}\right) \text{Add}(2,1)+\left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $ | $ \left(\frac{1}{7}+\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}+\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{2}^{(2)}} $ | $ \frac{i \text{Asd}(2,1)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{5}{21} \text{Add}(4,0) $ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{5} \text{Add}(4,1) $ | $ -\frac{2}{7} i \text{Add}(2,1)-\frac{2}{7} i \sqrt{\frac{10}{3}} \text{Add}(4,1) $ | $ \left(\frac{1}{7}-\frac{i}{7}\right) \sqrt{6} \text{Add}(2,1)-\left(\frac{1}{21}-\frac{i}{21}\right) \sqrt{5} \text{Add}(4,1) $ | $ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{3 i \text{Apf}(2,1)}{\sqrt{35}}-\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) $ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) $ | $ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) $ | $ \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) $ | $ \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1) $ | $ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $ | $ \left(-\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) $ | $ \frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) $ |
$ {Y_{-2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}}-(1+i) \sqrt{\frac{6}{35}} \text{Apf}(2,1) $ | $ \frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1)-i \sqrt{\frac{3}{35}} \text{Apf}(2,1) $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ -\frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) $ | $ \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) $ | $ \left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) $ | $ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $ | $ \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) $ |
$ {Y_{-1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ \left(-\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)-\left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) $ | $ -\frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)-\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) $ | $ -\frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}-\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)+\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ \left(-\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) $ | $ \frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)+\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ \left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}-\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) $ | $ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $ |
$ {Y_{0}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \frac{\left(\frac{3}{5}-\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}}-\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1) $ | $ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{10}{21}} \text{Apf}(4,1)-\frac{\left(\frac{3}{5}+\frac{3 i}{5}\right) \text{Apf}(2,1)}{\sqrt{7}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)+\left(\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1) $ | $ -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) $ | $ \left(-\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)-\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $ | $ \left(\frac{1}{15}+\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}+\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) $ | $ \frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}-\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)-\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) $ | $ \left(-\frac{7}{11}+\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) $ |
$ {Y_{1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \frac{1}{5} i \sqrt{\frac{3}{7}} \text{Apf}(2,1)+\frac{2}{3} i \sqrt{\frac{10}{7}} \text{Apf}(4,1) $ | $ \left(\frac{2}{5}-\frac{2 i}{5}\right) \sqrt{\frac{6}{7}} \text{Apf}(2,1)+\left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Apf}(4,1) $ | $ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $ | $ \left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) $ | $ -\frac{2}{5} i \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{8}{33} i \sqrt{5} \text{Aff}(4,1)-\frac{10}{143} i \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ \left(\frac{1}{15}-\frac{i}{15}\right) \sqrt{2} \text{Aff}(2,1)+\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{5}{3}} \text{Aff}(4,1)+\left(\frac{25}{429}-\frac{25 i}{429}\right) \sqrt{14} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ \frac{(1+i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}+\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) $ | $ \frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)+\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)+\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) $ |
$ {Y_{2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{7} \text{Apf}(4,1) $ | $ i \sqrt{\frac{3}{35}} \text{Apf}(2,1)-\frac{4}{3} i \sqrt{\frac{2}{7}} \text{Apf}(4,1) $ | $ (1-i) \sqrt{\frac{6}{35}} \text{Apf}(2,1)-\frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,1)}{\sqrt{7}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(-\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) $ | $ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $ | $ \left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{\frac{7}{6}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right)-\left(\frac{7}{33}+\frac{7 i}{33}\right) \sqrt{2} \text{Aff}(4,1) $ | $ -\frac{2 i \text{Aff}(2,1)}{3 \sqrt{5}}+\frac{2}{11} i \sqrt{\frac{2}{3}} \text{Aff}(4,1)+\frac{20}{429} i \sqrt{14} \text{Bff}(6,2) $ | $ \frac{(1-i) \text{Aff}(2,1)}{\sqrt{15}}+\left(\frac{4}{33}-\frac{4 i}{33}\right) \sqrt{2} \text{Aff}(4,1)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{\frac{35}{3}} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) $ |
$ {Y_{3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{7}{3}} \text{Apf}(4,1) $ | $ \frac{3 i \text{Apf}(2,1)}{\sqrt{35}}+\frac{2}{3} i \sqrt{\frac{2}{21}} \text{Apf}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{10}{429} i \sqrt{\frac{7}{33}} \left(8 \sqrt{22} \text{Aff}(6,1)-\sqrt{55} \text{Bff}(6,2)\right) $ | $ \left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \left(\text{Aff}(6,1)+2 \sqrt{10} \text{Bff}(6,2)\right) $ | $ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $ | $ \left(-\frac{7}{11}-\frac{7 i}{11}\right) \text{Aff}(4,1)-\left(\frac{5}{429}+\frac{5 i}{429}\right) \sqrt{\frac{7}{3}} \left(\sqrt{10} \text{Aff}(6,1)-4 \text{Bff}(6,2)\right) $ | $ -\frac{1}{3} i \sqrt{\frac{2}{5}} \text{Aff}(2,1)-\frac{4}{11} i \sqrt{3} \text{Aff}(4,1)-\frac{10}{429} i \sqrt{7} \text{Bff}(6,2) $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \text{Aff}(2,1)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{\frac{10}{3}} \text{Aff}(4,1)+\left(\frac{5}{429}-\frac{5 i}{429}\right) \sqrt{7} \text{Aff}(6,1) $ | $ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ 1 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_{x+y+z} $ | $\color{darkred}{ 0 }$ | $ \frac{1+i}{\sqrt{6}} $ | $ \frac{1}{\sqrt{3}} $ | $ -\frac{1-i}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_{x-y} $ | $\color{darkred}{ 0 }$ | $ \frac{1}{2}-\frac{i}{2} $ | $ 0 $ | $ -\frac{1}{2}-\frac{i}{2} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_{3z-r} $ | $\color{darkred}{ 0 }$ | $ -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} $ | $ \sqrt{\frac{2}{3}} $ | $ \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{\text{yz}+\text{xz}+\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{6}} $ | $ \frac{1+i}{\sqrt{6}} $ | $ 0 $ | $ -\frac{1-i}{\sqrt{6}} $ | $ -\frac{i}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{yz}-\text{xz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{2}+\frac{i}{2} $ | $ 0 $ | $ \frac{1}{2}+\frac{i}{2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{2\text{xy}-\text{xz}-\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{3}} $ | $ -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} $ | $ 0 $ | $ \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} $ | $ -\frac{i}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{x^2-y^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 1 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{\text{xyz}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{i}{\sqrt{2}} $ | $ 0 $ |
$ f_{x^3+y^3+z^3} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} $ | $ 0 $ | $ -\frac{1}{4}-\frac{i}{4} $ | $ \frac{1}{\sqrt{3}} $ | $ \frac{1}{4}-\frac{i}{4} $ | $ 0 $ | $ \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{3}} $ |
$ f_{x^3-y^3} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} $ | $ 0 $ | $ \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} $ | $ 0 $ | $ \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{3}{2}} $ | $ 0 $ | $ \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} $ |
$ f_{2z^3-x^3-y^3} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} $ | $ 0 $ | $ \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} $ | $ \sqrt{\frac{2}{3}} $ | $ -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} $ | $ 0 $ | $ \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{6}} $ |
$ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{4}-\frac{i}{4} $ | $ \frac{1}{\sqrt{6}} $ | $ \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} $ | $ 0 $ | $ \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{3}} $ | $ \frac{1}{\sqrt{6}} $ | $ \frac{1}{4}-\frac{i}{4} $ |
$ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{\frac{1}{4}+\frac{i}{4}}{\sqrt{2}} $ | $ \frac{1}{\sqrt{3}} $ | $ \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} $ | $ 0 $ | $ \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{5}{6}} $ | $ \frac{1}{\sqrt{3}} $ | $ -\frac{\frac{1}{4}-\frac{i}{4}}{\sqrt{2}} $ |
$ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} $ | $ 0 $ | $ \left(\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} $ | $ 0 $ | $ \left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt{\frac{5}{2}} $ | $ 0 $ | $ \left(-\frac{1}{4}-\frac{i}{4}\right) \sqrt{\frac{3}{2}} $ |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
$ $ | $ \text{s} $ | $ p_{x+y+z} $ | $ p_{x-y} $ | $ p_{3z-r} $ | $ d_{\text{yz}+\text{xz}+\text{xy}} $ | $ d_{\text{yz}-\text{xz}} $ | $ d_{2\text{xy}-\text{xz}-\text{yz}} $ | $ d_{x^2-y^2} $ | $ d_{3z^2-r^2} $ | $ f_{\text{xyz}} $ | $ f_{x^3+y^3+z^3} $ | $ f_{x^3-y^3} $ | $ f_{2z^3-x^3-y^3} $ | $ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} $ | $ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} $ | $ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\sqrt{\frac{6}{5}} \text{Asd}(2,1) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_{x+y+z} $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0)-\frac{2}{5} \sqrt{6} \text{App}(2,1) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) $ | $ \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_{x-y} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $ 0 $ | $ 0 $ | $ -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) $ | $ 0 $ |
$ p_{3z-r} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0)+\frac{1}{5} \sqrt{6} \text{App}(2,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $ 0 $ | $ 0 $ | $ -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) $ |
$ d_{\text{yz}+\text{xz}+\text{xy}} $ | $ -\sqrt{\frac{6}{5}} \text{Asd}(2,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{2}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)+\frac{16}{21} \sqrt{5} \text{Add}(4,1) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{yz}-\text{xz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) $ | $ 0 $ | $ \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{2\text{xy}-\text{xz}-\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \sqrt{6} \text{Add}(2,1)-\frac{4}{21} \text{Add}(4,0)-\frac{8}{21} \sqrt{5} \text{Add}(4,1) $ | $ 0 $ | $ \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{x^2-y^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{2}{7} \sqrt{3} \text{Add}(2,1)+\frac{2}{7} \sqrt{10} \text{Add}(4,1) $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{\text{xyz}} $ | $\color{darkred}{ 0 }$ | $ \frac{8 \text{Apf}(4,1)}{\sqrt{21}}-3 \sqrt{\frac{2}{35}} \text{Apf}(2,1) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) $ | $ 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{x^3+y^3+z^3} $ | $\color{darkred}{ 0 }$ | $ \frac{6}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}-\frac{4}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 2 \sqrt{\frac{2}{15}} \text{Aff}(2,1)-\frac{4}{11} \text{Aff}(4,1)-\frac{40}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ | $ \text{Aff}(0,0)+\frac{1}{5} \sqrt{\frac{2}{3}} \text{Aff}(2,1)+\frac{2}{11} \text{Aff}(4,0)+\frac{8}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)+\frac{100}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{20}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{x^3-y^3} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ | $ 0 $ |
$ f_{2z^3-x^3-y^3} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,1)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}}+\frac{2}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{5 \sqrt{6}}+\frac{2}{11} \text{Aff}(4,0)-\frac{4}{11} \sqrt{5} \text{Aff}(4,1)+\frac{100}{429} \text{Aff}(6,0)-\frac{50}{429} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{10}{429} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ |
$ f_{\left(y^2-z^2\right)x+\left(z^2-x^2\right)y+\left(x^2-y^2\right)z} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\sqrt{\frac{2}{3}} \text{Aff}(2,1)-\frac{2}{33} \text{Aff}(4,0)+\frac{8}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)+\frac{20}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ |
$ f_{-\left(y^2-z^2\right)x-\left(z^2-x^2\right)y+2\left(x^2-y^2\right)z} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ | $ 0 $ |
$ f_{-\left(y^2-z^2\right)x+\left(z^2-x^2\right)y} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -3 \sqrt{\frac{2}{35}} \text{Apf}(2,1)-2 \sqrt{\frac{3}{7}} \text{Apf}(4,1) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{\text{Aff}(2,1)}{\sqrt{30}}+\frac{8}{11} \text{Aff}(4,1)-\frac{10}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{7}{3}} \text{Bff}(6,2) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{\text{Aff}(2,1)}{\sqrt{6}}-\frac{2}{33} \text{Aff}(4,0)-\frac{4}{33} \sqrt{5} \text{Aff}(4,1)-\frac{60}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{14}{3}} \text{Aff}(6,1)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Bff}(6,2) $ |
Coupling for a single shell
Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-d orbital mixing
Potential for p-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C$\infty$v | D$\infty$h |