+Table of Contents
This is an old revision of the document!
Orientation Z
Symmetry Operations
In the Cs Point Group, with orientation Z there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
σh | {0,0,1} , |
Different Settings
Character Table
E(1) | σh(1) | |
---|---|---|
A' | 1 | 1 |
A'' | 1 | −1 |
Product Table
A' | A'' | |
---|---|---|
A' | A' | A'' |
A'' | A'' | A' |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. V(r,θ,ϕ)=∞∑k=0k∑m=−kAk,m(r)C(m)k(θ,ϕ) Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ) The presence of symmetry induces relations between the expansion coefficients such that V(r,θ,ϕ) is invariant under all symmetry operations. For the Cs Point group with orientation Z the form of the expansion coefficients is:
Input format suitable for Mathematica (Quanty.nb)
Ak,m={A(0,0)k=0∧m=0−A(1,1)+iAp(1,1)k=1∧m=−1A(1,1)+iAp(1,1)k=1∧m=1A(2,2)−iAp(2,2)k=2∧m=−2A(2,0)k=2∧m=0A(2,2)+iAp(2,2)k=2∧m=2−A(3,3)+iAp(3,3)k=3∧m=−3−A(3,1)+iAp(3,1)k=3∧m=−1A(3,1)+iAp(3,1)k=3∧m=1A(3,3)+iAp(3,3)k=3∧m=3A(4,4)−iAp(4,4)k=4∧m=−4A(4,2)−iAp(4,2)k=4∧m=−2A(4,0)k=4∧m=0A(4,2)+iAp(4,2)k=4∧m=2A(4,4)+iAp(4,4)k=4∧m=4−A(5,5)+iAp(5,5)k=5∧m=−5−A(5,3)+iAp(5,3)k=5∧m=−3−A(5,1)+iAp(5,1)k=5∧m=−1A(5,1)+iAp(5,1)k=5∧m=1A(5,3)+iAp(5,3)k=5∧m=3A(5,5)+iAp(5,5)k=5∧m=5A(6,6)−iAp(6,6)k=6∧m=−6A(6,4)−iAp(6,4)k=6∧m=−4A(6,2)−iAp(6,2)k=6∧m=−2A(6,0)k=6∧m=0A(6,2)+iAp(6,2)k=6∧m=2A(6,4)+iAp(6,4)k=6∧m=4A(6,6)+iAp(6,6)k=6∧m=6
Input format suitable for Quanty
- Akm_Cs_Z.Quanty
Akm = {{0, 0, A(0,0)} , {1,-1, (-1)*(A(1,1)) + (I)*(Ap(1,1))} , {1, 1, A(1,1) + (I)*(Ap(1,1))} , {2, 0, A(2,0)} , {2,-2, A(2,2) + (-I)*(Ap(2,2))} , {2, 2, A(2,2) + (I)*(Ap(2,2))} , {3,-1, (-1)*(A(3,1)) + (I)*(Ap(3,1))} , {3, 1, A(3,1) + (I)*(Ap(3,1))} , {3,-3, (-1)*(A(3,3)) + (I)*(Ap(3,3))} , {3, 3, A(3,3) + (I)*(Ap(3,3))} , {4, 0, A(4,0)} , {4,-2, A(4,2) + (-I)*(Ap(4,2))} , {4, 2, A(4,2) + (I)*(Ap(4,2))} , {4,-4, A(4,4) + (-I)*(Ap(4,4))} , {4, 4, A(4,4) + (I)*(Ap(4,4))} , {5,-1, (-1)*(A(5,1)) + (I)*(Ap(5,1))} , {5, 1, A(5,1) + (I)*(Ap(5,1))} , {5,-3, (-1)*(A(5,3)) + (I)*(Ap(5,3))} , {5, 3, A(5,3) + (I)*(Ap(5,3))} , {5,-5, (-1)*(A(5,5)) + (I)*(Ap(5,5))} , {5, 5, A(5,5) + (I)*(Ap(5,5))} , {6, 0, A(6,0)} , {6,-2, A(6,2) + (-I)*(Ap(6,2))} , {6, 2, A(6,2) + (I)*(Ap(6,2))} , {6,-4, A(6,4) + (-I)*(Ap(6,4))} , {6, 4, A(6,4) + (I)*(Ap(6,4))} , {6,-6, A(6,6) + (-I)*(Ap(6,6))} , {6, 6, A(6,6) + (I)*(Ap(6,6))} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: O=∑n″,l″,m″,n′,l′,m′⟨ψn″,l″,m″(r,θ,ϕ)|V(r,θ,ϕ)|ψn′,l′,m′(r,θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. ψn,l,m(r,θ,ϕ)=Rn,l(r)Y(l)m(θ,ϕ). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. An″l″,n′l′(k,m)=⟨Rn″,l″|Ak,m(r)|Rn′,l′⟩ Note the difference between the function Ak,m and the parameter An″l″,n′l′(k,m)
we can express the operator as O=∑n″,l″,m″,n′,l′,m′,k,mAn″l″,n′l′(k,m)⟨Y(m″)l″(θ,ϕ)|C(m)k(θ,ϕ)|Y(m′)l′(θ,ϕ)⟩a†n″,l″,m″a†n′,l′,m′
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle Al″,l′(k,m) can be complex. Instead of allowing complex parameters we took Al″,l′(k,m)+IBl″,l′(k,m) (with both A and B real) as the expansion parameter.
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y(0)0 | Ass(0,0) | −Asp(1,1)+iBsp(1,1)√3 | 0 | −−Asp(1,1)+iBsp(1,1)√3 | Asd(2,2)+iBsd(2,2)√5 | 0 | Asd(2,0)√5 | 0 | Asd(2,2)−iBsd(2,2)√5 | −Asf(3,3)+iBsf(3,3)√7 | 0 | −Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,3)+iBsf(3,3)√7 |
Y(1)−1 | −Asp(1,1)+iBsp(1,1)√3 | App(0,0)−15App(2,0) | 0 | −15√6(App(2,2)−iBpp(2,2)) | 17√35(Apd(3,1)+iBpd(3,1))−√25(Apd(1,1)+iBpd(1,1)) | 0 | 37√25(−Apd(3,1)+iBpd(3,1))−−Apd(1,1)+iBpd(1,1)√15 | 0 | 37(−Apd(3,3)+iBpd(3,3)) | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 |
Y(1)0 | 0 | 0 | App(0,0)+25App(2,0) | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5−27√65(Apd(3,1)+iBpd(3,1)) | 0 | −−Apd(1,1)+iBpd(1,1)√5−27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 |
Y(1)1 | Asp(1,1)+iBsp(1,1)√3 | −15√6(App(2,2)+iBpp(2,2)) | 0 | App(0,0)−15App(2,0) | 37(Apd(3,3)+iBpd(3,3)) | 0 | 37√25(Apd(3,1)+iBpd(3,1))−Apd(1,1)+iBpd(1,1)√15 | 0 | 17√35(−Apd(3,1)+iBpd(3,1))−√25(−Apd(1,1)+iBpd(1,1)) | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 |
Y(2)−2 | Asd(2,2)−iBsd(2,2)√5 | √25(−Apd(1,1)+iBpd(1,1))−17√35(−Apd(3,1)+iBpd(3,1)) | 0 | −37(−Apd(3,3)+iBpd(3,3)) | Add(0,0)−27Add(2,0)+121Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 0 | 13√107(Add(4,4)−iBdd(4,4)) | −√37(Adf(1,1)+iBdf(1,1))+13√27(Adf(3,1)+iBdf(3,1))−133√57(Adf(5,1)+iBdf(5,1)) | 0 | −−Adf(1,1)+iBdf(1,1)√35+2√2105(−Adf(3,1)+iBdf(3,1))−5(−Adf(5,1)+iBdf(5,1))11√21 | 0 | 13√27(−Adf(3,3)+iBdf(3,3))−533√2(−Adf(5,3)+iBdf(5,3)) | 0 | −511√23(−Adf(5,5)+iBdf(5,5)) |
Y(2)−1 | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5+27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | −17√6(Add(2,2)−iBdd(2,2))−221√10(Add(4,2)−iBdd(4,2)) | 0 | 0 | −√27(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√21+211√1021(Adf(5,1)+iBdf(5,1)) | 0 | −√335(−Adf(1,1)+iBdf(1,1))+13√235(−Adf(3,1)+iBdf(3,1))+20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 13√57(−Adf(3,3)+iBdf(3,3))+433√5(−Adf(5,3)+iBdf(5,3)) | 0 |
Y(2)0 | Asd(2,0)√5 | Apd(1,1)+iBpd(1,1)√15−37√25(Apd(3,1)+iBpd(3,1)) | 0 | −Apd(1,1)+iBpd(1,1)√15−37√25(−Apd(3,1)+iBpd(3,1)) | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)+27Add(2,0)+27Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 13√57(Adf(3,3)+iBdf(3,3))−233√5(Adf(5,3)+iBdf(5,3)) | 0 | −√635(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√35−511√27(Adf(5,1)+iBdf(5,1)) | 0 | −√635(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√35−511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 13√57(−Adf(3,3)+iBdf(3,3))−233√5(−Adf(5,3)+iBdf(5,3)) |
Y(2)1 | 0 | 0 | Apd(1,1)+iBpd(1,1)√5+27√65(Apd(3,1)+iBpd(3,1)) | 0 | 0 | −17√6(Add(2,2)+iBdd(2,2))−221√10(Add(4,2)+iBdd(4,2)) | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | 0 | 13√57(Adf(3,3)+iBdf(3,3))+433√5(Adf(5,3)+iBdf(5,3)) | 0 | −√335(Adf(1,1)+iBdf(1,1))+13√235(Adf(3,1)+iBdf(3,1))+20(Adf(5,1)+iBdf(5,1))33√7 | 0 | −√27(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√21+211√1021(−Adf(5,1)+iBdf(5,1)) | 0 |
Y(2)2 | Asd(2,2)+iBsd(2,2)√5 | −37(Apd(3,3)+iBpd(3,3)) | 0 | √25(Apd(1,1)+iBpd(1,1))−17√35(Apd(3,1)+iBpd(3,1)) | 13√107(Add(4,4)+iBdd(4,4)) | 0 | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)−27Add(2,0)+121Add(4,0) | −511√23(Adf(5,5)+iBdf(5,5)) | 0 | 13√27(Adf(3,3)+iBdf(3,3))−533√2(Adf(5,3)+iBdf(5,3)) | 0 | −Adf(1,1)+iBdf(1,1)√35+2√2105(Adf(3,1)+iBdf(3,1))−5(Adf(5,1)+iBdf(5,1))11√21 | 0 | −√37(−Adf(1,1)+iBdf(1,1))+13√27(−Adf(3,1)+iBdf(3,1))−133√57(−Adf(5,1)+iBdf(5,1)) |
Y(3)−3 | −Asf(3,3)+iBsf(3,3)√7 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 | √37(−Adf(1,1)+iBdf(1,1))−13√27(−Adf(3,1)+iBdf(3,1))+133√57(−Adf(5,1)+iBdf(5,1)) | 0 | 233√5(−Adf(5,3)+iBdf(5,3))−13√57(−Adf(3,3)+iBdf(3,3)) | 0 | 511√23(−Adf(5,5)+iBdf(5,5)) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) | 0 | −1013√733(Aff(6,6)−iBff(6,6)) |
Y(3)−2 | 0 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 | 0 | √27(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√21−211√1021(−Adf(5,1)+iBdf(5,1)) | 0 | −13√57(−Adf(3,3)+iBdf(3,3))−433√5(−Adf(5,3)+iBdf(5,3)) | 0 | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 | 133√70(Aff(4,4)−iBff(4,4))+10143√14(Aff(6,4)−iBff(6,4)) | 0 |
Y(3)−1 | −Asf(3,1)+iBsf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | Adf(1,1)+iBdf(1,1)√35−2√2105(Adf(3,1)+iBdf(3,1))+5(Adf(5,1)+iBdf(5,1))11√21 | 0 | √635(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√35+511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 533√2(−Adf(5,3)+iBdf(5,3))−13√27(−Adf(3,3)+iBdf(3,3)) | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −25√23(Aff(2,2)−iBff(2,2))−233√10(Aff(4,2)−iBff(4,2))−10143√353(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) |
Y(3)0 | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | √335(Adf(1,1)+iBdf(1,1))−13√235(Adf(3,1)+iBdf(3,1))−20(Adf(5,1)+iBdf(5,1))33√7 | 0 | √335(−Adf(1,1)+iBdf(1,1))−13√235(−Adf(3,1)+iBdf(3,1))−20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 |
Y(3)1 | Asf(3,1)+iBsf(3,1)√7 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 533√2(Adf(5,3)+iBdf(5,3))−13√27(Adf(3,3)+iBdf(3,3)) | 0 | √635(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√35+511√27(Adf(5,1)+iBdf(5,1)) | 0 | −Adf(1,1)+iBdf(1,1)√35−2√2105(−Adf(3,1)+iBdf(3,1))+5(−Adf(5,1)+iBdf(5,1))11√21 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −25√23(Aff(2,2)+iBff(2,2))−233√10(Aff(4,2)+iBff(4,2))−10143√353(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) |
Y(3)2 | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 0 | −13√57(Adf(3,3)+iBdf(3,3))−433√5(Adf(5,3)+iBdf(5,3)) | 0 | √27(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√21−211√1021(Adf(5,1)+iBdf(5,1)) | 0 | 0 | 133√70(Aff(4,4)+iBff(4,4))+10143√14(Aff(6,4)+iBff(6,4)) | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 |
Y(3)3 | Asf(3,3)+iBsf(3,3)√7 | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 511√23(Adf(5,5)+iBdf(5,5)) | 0 | 233√5(Adf(5,3)+iBdf(5,3))−13√57(Adf(3,3)+iBdf(3,3)) | 0 | √37(Adf(1,1)+iBdf(1,1))−13√27(Adf(3,1)+iBdf(3,1))+133√57(Adf(5,1)+iBdf(5,1)) | −1013√733(Aff(6,6)+iBff(6,6)) | 0 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
Y(0)0 | Y(1)−1 | Y(1)0 | Y(1)1 | Y(2)−2 | Y(2)−1 | Y(2)0 | Y(2)1 | Y(2)2 | Y(3)−3 | Y(3)−2 | Y(3)−1 | Y(3)0 | Y(3)1 | Y(3)2 | Y(3)3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
px | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
py | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
pz | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dx2−y2 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d3z2−r2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dyz | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxz | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | −1√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
dxy | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fxyz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i√2 | 0 | 0 | 0 | −i√2 | 0 |
fx(5x2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √54 | 0 | −√34 | 0 | √34 | 0 | −√54 |
fy(5y2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√54 | 0 | −i√34 | 0 | −i√34 | 0 | −i√54 |
fx(5z2−r2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
fx(y2−z2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −√34 | 0 | −√54 | 0 | √54 | 0 | √34 |
fy(z2−x2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −i√34 | 0 | i√54 | 0 | i√54 | 0 | −i√34 |
fz(x2−y2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1√2 | 0 | 0 | 0 | 1√2 | 0 |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
s | px | py | pz | dx2−y2 | d3z2−r2 | dyz | dxz | dxy | fxyz | fx(5x2−r2) | fy(5y2−r2) | fx(5z2−r2) | fx(y2−z2) | fy(z2−x2) | fz(x2−y2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s | Ass(0,0) | −√23Asp(1,1) | √23Bsp(1,1) | 0 | √25Asd(2,2) | Asd(2,0)√5 | 0 | 0 | −√25Bsd(2,2) | 0 | 12√37Asf(3,1)−12√57Asf(3,3) | −12√37Bsf(3,1)−12√57Bsf(3,3) | 0 | 12√57Asf(3,1)+12√37Asf(3,3) | 12√57Bsf(3,1)−12√37Bsf(3,3) | 0 |
px | −√23Asp(1,1) | App(0,0)−15App(2,0)+15√6App(2,2) | −15√6Bpp(2,2) | 0 | −√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3) | √215Apd(1,1)−6Apd(3,1)7√5 | 0 | 0 | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | 0 | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4) | 0 | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 | √635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2 | 0 |
py | √23Bsp(1,1) | −15√6Bpp(2,2) | App(0,0)−15App(2,0)−15√6App(2,2) | 0 | −√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3) | 6Bpd(3,1)7√5−√215Bpd(1,1) | 0 | 0 | −√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3) | 0 | 35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 0 | −√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | 0 |
pz | 0 | 0 | 0 | App(0,0)+25App(2,0) | 0 | 0 | √25Bpd(1,1)+47√35Bpd(3,1) | −√25Apd(1,1)−47√35Apd(3,1) | 0 | −√635Bpf(2,2)−23√27Bpf(4,2) | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | √635Apf(2,2)+23√27Apf(4,2) |
dx2−y2 | √25Asd(2,2) | −√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3) | −√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3) | 0 | Add(0,0)−27Add(2,0)+121Add(4,0)+13√107Add(4,4) | 17√103Add(4,2)−27√2Add(2,2) | 0 | 0 | −13√107Bdd(4,4) | 0 | −3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5) | −3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5) | 0 | Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5) | −Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5) | 0 |
d3z2−r2 | Asd(2,0)√5 | √215Apd(1,1)−6Apd(3,1)7√5 | 6Bpd(3,1)7√5−√215Bpd(1,1) | 0 | 17√103Add(4,2)−27√2Add(2,2) | Add(0,0)+27Add(2,0)+27Add(4,0) | 0 | 0 | 27√2Bdd(2,2)−17√103Bdd(4,2) | 0 | 3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3) | −3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3) | 0 | √314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3) | √314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3) | 0 |
dyz | 0 | 0 | 0 | √25Bpd(1,1)+47√35Bpd(3,1) | 0 | 0 | Add(0,0)+17Add(2,0)−17√6Add(2,2)−421Add(4,0)−221√10Add(4,2) | −17√6Bdd(2,2)−221√10Bdd(4,2) | 0 | −√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3) | 0 | 0 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | 0 | 0 | −√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3) |
dxz | 0 | 0 | 0 | −√25Apd(1,1)−47√35Apd(3,1) | 0 | 0 | −17√6Bdd(2,2)−221√10Bdd(4,2) | Add(0,0)+17Add(2,0)+17√6Add(2,2)−421Add(4,0)+221√10Add(4,2) | 0 | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 | 0 | √635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1) | 0 | 0 | −√27Adf(1,1)−Adf(3,1)√21−13√57Adf(3,3)+211√1021Adf(5,1)−433√5Adf(5,3) |
dxy | −√25Bsd(2,2) | √25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3) | −√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3) | 0 | −13√107Bdd(4,4) | 27√2Bdd(2,2)−17√103Bdd(4,2) | 0 | 0 | Add(0,0)−27Add(2,0)+121Add(4,0)−13√107Add(4,4) | 0 | −√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5) | √635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5) | 0 | √27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5) | √27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5) | 0 |
fxyz | 0 | 0 | 0 | −√635Bpf(2,2)−23√27Bpf(4,2) | 0 | 0 | −√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3) | √27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3) | 0 | Aff(0,0)−733Aff(4,0)−133√70Aff(4,4)+10143Aff(6,0)−10143√14Aff(6,4) | 0 | 0 | 23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2) | 0 | 0 | −133√70Bff(4,4)−10143√14Bff(6,4) |
fx(5x2−r2) | 12√37Asf(3,1)−12√57Asf(3,3) | −310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4) | 35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4) | 0 | −3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5) | 3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3) | 0 | 0 | −√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5) | 0 | Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6) | Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6) | 0 | Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6) | Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6) | 0 |
fy(5y2−r2) | −12√37Bsf(3,1)−12√57Bsf(3,3) | 35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4) | −310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4) | 0 | −3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5) | −3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3) | 0 | 0 | √635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5) | 0 | Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6) | Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6) | 0 | −Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6) | −Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6) | 0 |
fx(5z2−r2) | 0 | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | −√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1) | √635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1) | 0 | 23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2) | 0 | 0 | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | 0 | −23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2) |
fx(y2−z2) | 12√57Asf(3,1)+12√37Asf(3,3) | −3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2 | −√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2 | 0 | Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5) | √314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3) | 0 | 0 | √27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5) | 0 | Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6) | −Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6) | 0 | Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6) | Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6) | 0 |
fy(z2−x2) | 12√57Bsf(3,1)−12√37Bsf(3,3) | √635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2 | 3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2 | 0 | −Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5) | √314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3) | 0 | 0 | √27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5) | 0 | Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6) | −Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6) | 0 | Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6) | Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6) | 0 |
fz(x2−y2) | 0 | 0 | 0 | √635Apf(2,2)+23√27Apf(4,2) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bdf}(1,1)-\frac{\text{Bdf}(3,1)}{\sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Bdf}(5,1)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ -\sqrt{\frac{2}{7}} \text{Adf}(1,1)-\frac{\text{Adf}(3,1)}{\sqrt{21}}-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{2}{11} \sqrt{\frac{10}{21}} \text{Adf}(5,1)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) } | \color{darkred}{ 0 } | -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) | 0 | 0 | -\frac{2}{3} \sqrt{\frac{2}{5}} \text{Aff}(2,2)-\frac{1}{11} \sqrt{\frac{2}{3}} \text{Aff}(4,2)+\frac{40}{429} \sqrt{7} \text{Aff}(6,2) | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) |
Coupling for a single shell
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.