Differences
This shows you the differences between two versions of the page.
physics_chemistry:point_groups:d4h:orientation_zxy [2018/03/21 18:32] – created Stefano Agrestini | physics_chemistry:point_groups:d4h:orientation_zxy [2018/04/06 09:03] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Zxy ====== | ====== Orientation Zxy ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | In the D4h Point Group, with orientation Zxy there are the following symmetry operations | ||
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ $\text{E}$ | $\{0,0,0\}$ , | |
- | -- some example code | + | ^ $C_4$ | $\{0,0,1\}$ , $\{0, |
+ | ^ $C_2$ | $\{0,0,1\}$ , | | ||
+ | ^ $C_2$ | $\{0,1,0\}$ , $\{1,0,0\}$ , | | ||
+ | ^ $C_2$ | $\{1,1,0\}$ , $\{1, | ||
+ | ^ $\text{i}$ | $\{0,0,0\}$ , | | ||
+ | ^ $S_4$ | $\{0,0,1\}$ , $\{0, | ||
+ | ^ $\sigma _h$ | $\{0,0,1\}$ , | | ||
+ | ^ $\sigma _v$ | $\{1,0,0\}$ , $\{0,1,0\}$ , | | ||
+ | ^ $\sigma _d$ | $\{1,1,0\}$ , $\{1, | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{E} \, | ||
+ | ^ $ A_{1g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | | ||
+ | ^ $ A_{2g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | | ||
+ | ^ $ B_{1g} $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | | ||
+ | ^ $ B_{2g} $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | | ||
+ | ^ $ E_g $ | $ 2 $ | $ 0 $ | $ -2 $ | $ 0 $ | $ 0 $ | $ 2 $ | $ 0 $ | $ -2 $ | $ 0 $ | $ 0 $ | | ||
+ | ^ $ A_{1u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ | | ||
+ | ^ $ A_{2u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ 1 $ | $ 1 $ | | ||
+ | ^ $ B_{1u} $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ 1 $ | | ||
+ | ^ $ B_{2u} $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ -1 $ | | ||
+ | ^ $ E_u $ | $ 2 $ | $ 0 $ | $ -2 $ | $ 0 $ | $ 0 $ | $ -2 $ | $ 0 $ | $ 2 $ | $ 0 $ | $ 0 $ | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ A_{1g} $ ^ $ A_{2g} $ ^ $ B_{1g} $ ^ $ B_{2g} $ ^ $ E_g $ ^ $ A_{1u} $ ^ $ A_{2u} $ ^ $ B_{1u} $ ^ $ B_{2u} $ ^ $ E_u $ ^ | ||
+ | ^ $ A_{1g} $ | $ A_{1g} $ | $ A_{2g} $ | $ B_{1g} $ | $ B_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ B_{1u} $ | $ B_{2u} $ | $ E_u $ | | ||
+ | ^ $ A_{2g} $ | $ A_{2g} $ | $ A_{1g} $ | $ B_{2g} $ | $ B_{1g} $ | $ E_g $ | $ A_{2u} $ | $ A_{1u} $ | $ B_{2u} $ | $ B_{1u} $ | $ E_u $ | | ||
+ | ^ $ B_{1g} $ | $ B_{1g} $ | $ B_{2g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ B_{1u} $ | $ B_{2u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | | ||
+ | ^ $ B_{2g} $ | $ B_{2g} $ | $ B_{1g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ B_{2u} $ | $ B_{1u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | | ||
+ | ^ $ E_g $ | $ E_g $ | $ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+B_{1g}+B_{2g} $ | $ E_u $ | $ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+B_{1u}+B_{2u} $ | | ||
+ | ^ $ A_{1u} $ | $ A_{1u} $ | $ A_{2u} $ | $ B_{1u} $ | $ B_{2u} $ | $ E_u $ | $ A_{1g} $ | $ A_{2g} $ | $ B_{1g} $ | $ B_{2g} $ | $ E_g $ | | ||
+ | ^ $ A_{2u} $ | $ A_{2u} $ | $ A_{1u} $ | $ B_{2u} $ | $ B_{1u} $ | $ E_u $ | $ A_{2g} $ | $ A_{1g} $ | $ B_{2g} $ | $ B_{1g} $ | $ E_g $ | | ||
+ | ^ $ B_{1u} $ | $ B_{1u} $ | $ B_{2u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ B_{1g} $ | $ B_{2g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | | ||
+ | ^ $ B_{2u} $ | $ B_{2u} $ | $ B_{1u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ B_{2g} $ | $ B_{1g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | | ||
+ | ^ $ E_u $ | $ E_u $ | $ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+B_{1u}+B_{2u} $ | $ E_g $ | $ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+B_{1g}+B_{2g} $ | | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | $$V(r, | ||
+ | Here $A_{k, | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that $V(r, | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {2, 0, A(2,0)} , | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 4, A(4,4)} , | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 4, A(6,4)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | $$ O = \sum_{n'', | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n, | ||
+ | $$ A_{n'' | ||
+ | Note the difference between the function $A_{k,m}$ and the parameter $A_{n'' | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | $$ O = \sum_{n'', | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'', | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0, | ||
+ | ^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0, | ||
+ | ^$ {Y_{0}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0, | ||
+ | ^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0, | ||
+ | ^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0, | ||
+ | ^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ {Y_{0}^{(2)}} $|$ \frac{\text{Asd}(2, | ||
+ | ^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4, | ||
+ | ^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{2 \text{Apf}(4, | ||
+ | ^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0, | ||
+ | ^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{0}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{33} \sqrt{70} \text{Aff}(4, | ||
+ | ^$ {Y_{3}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{2 \text{Apf}(4, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| | ||
+ | ^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| | ||
+ | ^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| | ||
+ | ^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{s} $ ^ $ p_x $ ^ $ p_y $ ^ $ p_z $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ | ||
+ | ^$ \text{s} $|$ \text{Ass}(0, | ||
+ | ^$ p_x $|$\color{darkred}{ 0 }$|$ \text{App}(0, | ||
+ | ^$ p_y $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0, | ||
+ | ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0, | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0, | ||
+ | ^$ d_{3z^2-r^2} $|$ \frac{\text{Asd}(2, | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0, | ||
+ | ^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ -\frac{3}{10} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ -\frac{3 \text{Apf}(2, | ||
+ | ^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3 \text{Apf}(2, | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters $A_{l'', | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea1g} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ \text{Ea1g} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{s} $ ^ | ||
+ | ^$ \text{s} $|$ \text{Ea1g} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ | ||
+ | ^$ \text{s} $|$ 1 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Ea1g}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Ea2u + (2)*(Eeu))} , | ||
+ | {2, 0, (5/3)*(Ea2u + (-1)*(Eeu))} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ | ||
+ | ^$ {Y_{-1}^{(1)}} $|$ \text{Eeu} $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Ea2u} $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Eeu} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ p_x $ ^ $ p_y $ ^ $ p_z $ ^ | ||
+ | ^$ p_x $|$ \text{Eeu} $|$ 0 $|$ 0 $| | ||
+ | ^$ p_y $|$ 0 $|$ \text{Eeu} $|$ 0 $| | ||
+ | ^$ p_z $|$ 0 $|$ 0 $|$ \text{Ea2u} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ | ||
+ | ^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| | ||
+ | ^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $| | ||
+ | ^$ p_z $|$ 0 $|$ 1 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Eeu}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeu}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea2u}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/5)*(Ea1g + Eb1g + Eb2g + (2)*(Eeg))} , | ||
+ | {2, 0, Ea1g + (-1)*(Eb1g) + (-1)*(Eb2g) + Eeg} , | ||
+ | {4, 0, (3/ | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ {Y_{-2}^{(2)}} $|$ \frac{\text{Eb1g}+\text{Eb2g}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eb1g}-\text{Eb2g}}{2} $| | ||
+ | ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Eeg} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Ea1g} $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eeg} $|$ 0 $| | ||
+ | ^$ {Y_{2}^{(2)}} $|$ \frac{\text{Eb1g}-\text{Eb2g}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eb1g}+\text{Eb2g}}{2} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ | ||
+ | ^$ d_{x^2-y^2} $|$ \text{Eb1g} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$ \text{Ea1g} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$ 0 $|$ \text{Eeg} $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eeg} $|$ 0 $| | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eb2g} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Eb1g}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea1g}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeg}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeg}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eb2g}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Ea2u + Eb1u + Eb2u + (2)*(Eeu1) + (2)*(Eeu2))} , | ||
+ | {2, 0, (5/7)*(Ea2u + (-1)*(Eeu1) + (sqrt(15))*(Meu))} , | ||
+ | {4, 0, (3/ | ||
+ | | ||
+ | {4, 4, (-3/ | ||
+ | {6, 0, (13/ | ||
+ | | ||
+ | {6, 4, (-13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{-3}^{(3)}} $|$ \frac{1}{8} \left(5 \text{Eeu1}+3 \text{Eeu2}-2 \sqrt{15} \text{Meu}\right) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(\sqrt{15} \text{Eeu1}-\sqrt{15} \text{Eeu2}+2 \text{Meu}\right) $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \frac{\text{Eb1u}+\text{Eb2u}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eb2u}-\text{Eb1u}}{2} $|$ 0 $| | ||
+ | ^$ {Y_{-1}^{(3)}} $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(3 \text{Eeu1}+5 \text{Eeu2}+2 \sqrt{15} \text{Meu}\right) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(\sqrt{15} \text{Eeu1}-\sqrt{15} \text{Eeu2}+2 \text{Meu}\right) $| | ||
+ | ^$ {Y_{0}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2u} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(3)}} $|$ \frac{1}{8} \left(\sqrt{15} \text{Eeu1}-\sqrt{15} \text{Eeu2}+2 \text{Meu}\right) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(3 \text{Eeu1}+5 \text{Eeu2}+2 \sqrt{15} \text{Meu}\right) $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{2}^{(3)}} $|$ 0 $|$ \frac{\text{Eb2u}-\text{Eb1u}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eb1u}+\text{Eb2u}}{2} $|$ 0 $| | ||
+ | ^$ {Y_{3}^{(3)}} $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(\sqrt{15} \text{Eeu1}-\sqrt{15} \text{Eeu2}+2 \text{Meu}\right) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \left(5 \text{Eeu1}+3 \text{Eeu2}-2 \sqrt{15} \text{Meu}\right) $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ | ||
+ | ^$ f_{\text{xyz}} $|$ \text{Eb1u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(5x^2-r^2\right)} $|$ 0 $|$ \text{Eeu1} $|$ 0 $|$ 0 $|$ \text{Meu} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{y\left(5y^2-r^2\right)} $|$ 0 $|$ 0 $|$ \text{Eeu1} $|$ 0 $|$ 0 $|$ -\text{Meu} $|$ 0 $| | ||
+ | ^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2u} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(y^2-z^2\right)} $|$ 0 $|$ \text{Meu} $|$ 0 $|$ 0 $|$ \text{Eeu2} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{y\left(z^2-x^2\right)} $|$ 0 $|$ 0 $|$ -\text{Meu} $|$ 0 $|$ 0 $|$ \text{Eeu2} $|$ 0 $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eb2u} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{x\left(5x^2-r^2\right)} $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| | ||
+ | ^$ f_{y\left(5y^2-r^2\right)} $|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| | ||
+ | ^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(y^2-z^2\right)} $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| | ||
+ | ^$ f_{y\left(z^2-x^2\right)} $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Eb1u}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeu1}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeu1}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea2u}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeu2}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eeu2}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eb2u}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ 0 $|$ 0 $|$ \frac{A(2, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ | ||
+ | ^$ \text{s} $|$ 0 $|$ \frac{A(2, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k=0\land m=0 \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D4h_Zxy.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 4, A(4,4)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 A(4,4)}{3 \sqrt{3}} $| | ||
+ | ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(1)}} $|$ -\frac{2 A(4,4)}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ | ||
+ | ^$ p_x $|$ 0 $|$ \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) $|$ 0 $|$ 0 $|$ \frac{5 A(4,0)-9 A(2,0)}{6 \sqrt{35}}-\frac{A(4, | ||
+ | ^$ p_y $|$ 0 $|$ 0 $|$ \frac{5 A(4,0)-9 A(2,0)}{10 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{6}} A(4,4) $|$ 0 $|$ 0 $|$ \frac{9 A(2,0)-5 A(4,0)}{6 \sqrt{35}}+\frac{A(4, | ||
+ | ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |