Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
physics_chemistry:point_groups:cs:orientation_z [2018/03/24 00:31] – Maurits W. Haverkort | physics_chemistry:point_groups:cs:orientation_z [2018/04/06 09:16] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Z ====== | ====== Orientation Z ====== | ||
Line 57: | Line 59: | ||
### | ### | ||
- | * [[physics_chemistry: | + | * [[physics_chemistry: |
### | ### | ||
Line 73: | Line 75: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
* [[physics_chemistry: | * [[physics_chemistry: | ||
Line 84: | Line 88: | ||
### | ### | ||
- | Any potential (function) can be written | + | Any potential (function) can be written as a sum over spherical harmonics. |
+ | $$V(r, | ||
+ | Here Ak,m(r) is a radial function and C(m)k(θ,ϕ) a renormalised spherical harmonics. $C(m)k(θ,ϕ)=√4π2k+1Y(m)k(θ,ϕ)$ | ||
+ | The presence of symmetry induces relations between the expansion coefficients | ||
### | ### | ||
- | ==== Input format suitable for Mathematica (Quanty.nb) | + | ==== Expansion |
### | ### | ||
Line 94: | Line 101: | ||
| | ||
| | ||
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
| | ||
- | | + | |
- | | + | |
- | | + | |
\end{cases}$$ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
### | ### | ||
Line 132: | Line 151: | ||
Akm = {{0, 0, A(0,0)} , | Akm = {{0, 0, A(0,0)} , | ||
- | | + | |
- | {1, 1, A(1,1) + ((+1*I))*(Ap(1,1))} , | + | {1, 1, A(1,1) + (I)*(B(1,1))} , |
{2, 0, A(2,0)} , | {2, 0, A(2,0)} , | ||
- | | + | |
- | {2, 2, A(2,2) + ((+1*I))*(Ap(2,2))} , | + | {2, 2, A(2,2) + (I)*(B(2,2))} , |
- | | + | |
- | {3, 1, A(3,1) + ((+1*I))*(Ap(3,1))} , | + | {3, 1, A(3,1) + (I)*(B(3,1))} , |
- | | + | |
- | {3, 3, A(3,3) + ((+1*I))*(Ap(3,3))} , | + | {3, 3, A(3,3) + (I)*(B(3,3))} , |
{4, 0, A(4,0)} , | {4, 0, A(4,0)} , | ||
- | | + | |
- | {4, 2, A(4,2) + ((+1*I))*(Ap(4,2))} , | + | {4, 2, A(4,2) + (I)*(B(4,2))} , |
- | | + | |
- | {4, 4, A(4,4) + ((+1*I))*(Ap(4,4))} , | + | {4, 4, A(4,4) + (I)*(B(4,4))} , |
- | | + | |
- | {5, 1, A(5,1) + ((+1*I))*(Ap(5,1))} , | + | {5, 1, A(5,1) + (I)*(B(5,1))} , |
- | | + | |
- | {5, 3, A(5,3) + ((+1*I))*(Ap(5,3))} , | + | {5, 3, A(5,3) + (I)*(B(5,3))} , |
- | | + | |
- | {5, 5, A(5,5) + ((+1*I))*(Ap(5,5))} , | + | {5, 5, A(5,5) + (I)*(B(5,5))} , |
{6, 0, A(6,0)} , | {6, 0, A(6,0)} , | ||
- | | + | |
- | {6, 2, A(6,2) + ((+1*I))*(Ap(6,2))} , | + | {6, 2, A(6,2) + (I)*(B(6,2))} , |
- | | + | |
- | {6, 4, A(6,4) + ((+1*I))*(Ap(6,4))} , | + | {6, 4, A(6,4) + (I)*(B(6,4))} , |
- | | + | |
- | {6, 6, A(6,6) + ((+1*I))*(Ap(6,6))} } | + | {6, 6, A(6,6) + (I)*(B(6,6))} } |
</ | </ | ||
Line 168: | Line 187: | ||
### | ### | ||
- | | | + | The operator representing the potential in second quantisation is given as: |
- | ^ $ \text{Subsuperscript}[\text{Y},0,\text{(0)}] $ | Ass(0,0) | −Asp(1,1)+iBsp(1,1)√3 | 0 | −−Asp(1,1)+iBsp(1,1)√3 | Asd(2,2)+iBsd(2,2)√5 | 0 | Asd(2,0)√5 | 0 | Asd(2,2)−iBsd(2,2)√5 | −Asf(3,3)+iBsf(3,3)√7 | 0 | −Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,1)+iBsf(3,1)√7 | 0 | −−Asf(3,3)+iBsf(3,3)√7 | | + | $$ O = \sum_{n'', |
- | ^ $ \text{Subsuperscript}[\text{Y},-1,\text{(1)}] $ | −Asp(1,1)+iBsp(1,1)√3 | App(0,0)−15App(2,0) | 0 | −15√6(App(2,2)−iBpp(2,2)) | 17√35(Apd(3,1)+iBpd(3,1))−√25(Apd(1,1)+iBpd(1,1)) | 0 | 37√25(−Apd(3,1)+iBpd(3,1))−−Apd(1,1)+iBpd(1,1)√15 | 0 | 37(−Apd(3,3)+iBpd(3,3)) | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 | | + | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r, |
- | ^ $ \text{Subsuperscript}[\text{Y},0,\text{(1)}] $ | 0 | 0 | App(0,0)+25App(2,0) | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5−27√65(Apd(3,1)+iBpd(3,1)) | 0 | −−Apd(1,1)+iBpd(1,1)√5−27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 | | + | $$ A_{n'' |
- | ^ $ \text{Subsuperscript}[\text{Y},1,\text{(1)}] $ | Asp(1,1)+iBsp(1,1)√3 | −15√6(App(2,2)+iBpp(2,2)) | 0 | App(0,0)−15App(2,0) | 37(Apd(3,3)+iBpd(3,3)) | 0 | 37√25(Apd(3,1)+iBpd(3,1))−Apd(1,1)+iBpd(1,1)√15 | 0 | 17√35(−Apd(3,1)+iBpd(3,1))−√25(−Apd(1,1)+iBpd(1,1)) | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 | | + | Note the difference between the function $A_{k,m}andtheparameterA_{n'' |
- | ^ $ \text{Subsuperscript}[\text{Y},-2,\text{(2)}] $ | Asd(2,2)−iBsd(2,2)√5 | √25(−Apd(1,1)+iBpd(1,1))−17√35(−Apd(3,1)+iBpd(3,1)) | 0 | −37(−Apd(3,3)+iBpd(3,3)) | Add(0,0)−27Add(2,0)+121Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 0 | 13√107(Add(4,4)−iBdd(4,4)) | −√37(Adf(1,1)+iBdf(1,1))+13√27(Adf(3,1)+iBdf(3,1))−133√57(Adf(5,1)+iBdf(5,1)) | 0 | −−Adf(1,1)+iBdf(1,1)√35+2√2105(−Adf(3,1)+iBdf(3,1))−5(−Adf(5,1)+iBdf(5,1))11√21 | 0 | 13√27(−Adf(3,3)+iBdf(3,3))−533√2(−Adf(5,3)+iBdf(5,3)) | 0 | −511√23(−Adf(5,5)+iBdf(5,5)) | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},-1,\text{(2)}] $ | 0 | 0 | −Apd(1,1)+iBpd(1,1)√5+27√65(−Apd(3,1)+iBpd(3,1)) | 0 | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | −17√6(Add(2,2)−iBdd(2,2))−221√10(Add(4,2)−iBdd(4,2)) | 0 | 0 | −√27(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√21+211√1021(Adf(5,1)+iBdf(5,1)) | 0 | −√335(−Adf(1,1)+iBdf(1,1))+13√235(−Adf(3,1)+iBdf(3,1))+20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 13√57(−Adf(3,3)+iBdf(3,3))+433√5(−Adf(5,3)+iBdf(5,3)) | 0 | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},0,\text{(2)}] $ | Asd(2,0)√5 | Apd(1,1)+iBpd(1,1)√15−37√25(Apd(3,1)+iBpd(3,1)) | 0 | −Apd(1,1)+iBpd(1,1)√15−37√25(−Apd(3,1)+iBpd(3,1)) | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)+27Add(2,0)+27Add(4,0) | 0 | 17√53(Add(4,2)−iBdd(4,2))−27(Add(2,2)−iBdd(2,2)) | 13√57(Adf(3,3)+iBdf(3,3))−233√5(Adf(5,3)+iBdf(5,3)) | 0 | −√635(Adf(1,1)+iBdf(1,1))−Adf(3,1)+iBdf(3,1)√35−511√27(Adf(5,1)+iBdf(5,1)) | 0 | −√635(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√35−511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 13√57(−Adf(3,3)+iBdf(3,3))−233√5(−Adf(5,3)+iBdf(5,3)) | | + | ### |
- | ^ $ \text{Subsuperscript}[\text{Y},1,\text{(2)}] $ | 0 | 0 | Apd(1,1)+iBpd(1,1)√5+27√65(Apd(3,1)+iBpd(3,1)) | 0 | 0 | −17√6(Add(2,2)+iBdd(2,2))−221√10(Add(4,2)+iBdd(4,2)) | 0 | Add(0,0)+17Add(2,0)−421Add(4,0) | 0 | 0 | 13√57(Adf(3,3)+iBdf(3,3))+433√5(Adf(5,3)+iBdf(5,3)) | 0 | −√335(Adf(1,1)+iBdf(1,1))+13√235(Adf(3,1)+iBdf(3,1))+20(Adf(5,1)+iBdf(5,1))33√7 | 0 | −√27(−Adf(1,1)+iBdf(1,1))−−Adf(3,1)+iBdf(3,1)√21+211√1021(−Adf(5,1)+iBdf(5,1)) | 0 | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},2,\text{(2)}] $ | Asd(2,2)+iBsd(2,2)√5 | −37(Apd(3,3)+iBpd(3,3)) | 0 | √25(Apd(1,1)+iBpd(1,1))−17√35(Apd(3,1)+iBpd(3,1)) | 13√107(Add(4,4)+iBdd(4,4)) | 0 | 17√53(Add(4,2)+iBdd(4,2))−27(Add(2,2)+iBdd(2,2)) | 0 | Add(0,0)−27Add(2,0)+121Add(4,0) | −511√23(Adf(5,5)+iBdf(5,5)) | 0 | 13√27(Adf(3,3)+iBdf(3,3))−533√2(Adf(5,3)+iBdf(5,3)) | 0 | −Adf(1,1)+iBdf(1,1)√35+2√2105(Adf(3,1)+iBdf(3,1))−5(Adf(5,1)+iBdf(5,1))11√21 | 0 | −√37(−Adf(1,1)+iBdf(1,1))+13√27(−Adf(3,1)+iBdf(3,1))−133√57(−Adf(5,1)+iBdf(5,1)) | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},-3,\text{(3)}] $ | −Asf(3,3)+iBsf(3,3)√7 | 3(Apf(2,2)−iBpf(2,2))√35−Apf(4,2)−iBpf(4,2)3√21 | 0 | −2(Apf(4,4)−iBpf(4,4))3√3 | √37(−Adf(1,1)+iBdf(1,1))−13√27(−Adf(3,1)+iBdf(3,1))+133√57(−Adf(5,1)+iBdf(5,1)) | 0 | 233√5(−Adf(5,3)+iBdf(5,3))−13√57(−Adf(3,3)+iBdf(3,3)) | 0 | 511√23(−Adf(5,5)+iBdf(5,5)) | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) | 0 | −1013√733(Aff(6,6)−iBff(6,6)) | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},-2,\text{(3)}] $ | 0 | 0 | √335(Apf(2,2)−iBpf(2,2))+2(Apf(4,2)−iBpf(4,2))3√7 | 0 | 0 | √27(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√21−211√1021(−Adf(5,1)+iBdf(5,1)) | 0 | −13√57(−Adf(3,3)+iBdf(3,3))−433√5(−Adf(5,3)+iBdf(5,3)) | 0 | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 | 133√70(Aff(4,4)−iBff(4,4))+10143√14(Aff(6,4)−iBff(6,4)) | 0 | | + | ### |
- | ^ $ \text{Subsuperscript}[\text{Y},-1,\text{(3)}] $ | −Asf(3,1)+iBsf(3,1)√7 | 35√27Apf(2,0)−13√27Apf(4,0) | 0 | 15√37(Apf(2,2)−iBpf(2,2))−13√57(Apf(4,2)−iBpf(4,2)) | Adf(1,1)+iBdf(1,1)√35−2√2105(Adf(3,1)+iBdf(3,1))+5(Adf(5,1)+iBdf(5,1))11√21 | 0 | √635(−Adf(1,1)+iBdf(1,1))+−Adf(3,1)+iBdf(3,1)√35+511√27(−Adf(5,1)+iBdf(5,1)) | 0 | 533√2(−Adf(5,3)+iBdf(5,3))−13√27(−Adf(3,3)+iBdf(3,3)) | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −25√23(Aff(2,2)−iBff(2,2))−233√10(Aff(4,2)−iBff(4,2))−10143√353(Aff(6,2)−iBff(6,2)) | 0 | 111√143(Aff(4,4)−iBff(4,4))−5143√703(Aff(6,4)−iBff(6,4)) | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},0,\text{(3)}] $ | 0 | 0 | 35√37Apf(2,0)+4Apf(4,0)3√21 | 0 | 0 | √335(Adf(1,1)+iBdf(1,1))−13√235(Adf(3,1)+iBdf(3,1))−20(Adf(5,1)+iBdf(5,1))33√7 | 0 | √335(−Adf(1,1)+iBdf(1,1))−13√235(−Adf(3,1)+iBdf(3,1))−20(−Adf(5,1)+iBdf(5,1))33√7 | 0 | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0) | 0 | −2(Aff(2,2)−iBff(2,2))3√5−Aff(4,2)−iBff(4,2)11√3+20429√14(Aff(6,2)−iBff(6,2)) | 0 | | + | |
- | ^ $ \text{Subsuperscript}[\text{Y},1,\text{(3)}] $ | Asf(3,1)+iBsf(3,1)√7 | 15√37(Apf(2,2)+iBpf(2,2))−13√57(Apf(4,2)+iBpf(4,2)) | 0 | 35√27Apf(2,0)−13√27Apf(4,0) | 533√2(Adf(5,3)+iBdf(5,3))−13√27(Adf(3,3)+iBdf(3,3)) | 0 | √635(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√35+511√27(Adf(5,1)+iBdf(5,1)) | 0 | −Adf(1,1)+iBdf(1,1)√35−2√2105(−Adf(3,1)+iBdf(3,1))+5(−Adf(5,1)+iBdf(5,1))11√21 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −25√23(Aff(2,2)+iBff(2,2))−233√10(Aff(4,2)+iBff(4,2))−10143√353(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)+15Aff(2,0)+133Aff(4,0)−25143Aff(6,0) | 0 | −13√25(Aff(2,2)−iBff(2,2))+111√6(Aff(4,2)−iBff(4,2))−10429√7(Aff(6,2)−iBff(6,2)) | | + | we can express the operator as |
- | ^ $ \text{Subsuperscript}[\text{Y},2,\text{(3)}] $ | 0 | 0 | √335(Apf(2,2)+iBpf(2,2))+2(Apf(4,2)+iBpf(4,2))3√7 | 0 | 0 | −13√57(Adf(3,3)+iBdf(3,3))−433√5(Adf(5,3)+iBdf(5,3)) | 0 | √27(Adf(1,1)+iBdf(1,1))+Adf(3,1)+iBdf(3,1)√21−211√1021(Adf(5,1)+iBdf(5,1)) | 0 | 0 | 133√70(Aff(4,4)+iBff(4,4))+10143√14(Aff(6,4)+iBff(6,4)) | 0 | −2(Aff(2,2)+iBff(2,2))3√5−Aff(4,2)+iBff(4,2)11√3+20429√14(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−733Aff(4,0)+10143Aff(6,0) | 0 | | + | $$ O = \sum_{n'', |
- | ^ $ \text{Subsuperscript}[\text{Y},3,\text{(3)}] $ | Asf(3,3)+iBsf(3,3)√7 | −2(Apf(4,4)+iBpf(4,4))3√3 | 0 | 3(Apf(2,2)+iBpf(2,2))√35−Apf(4,2)+iBpf(4,2)3√21 | 511√23(Adf(5,5)+iBdf(5,5)) | 0 | 233√5(Adf(5,3)+iBdf(5,3))−13√57(Adf(3,3)+iBdf(3,3)) | 0 | √37(Adf(1,1)+iBdf(1,1))−13√27(Adf(3,1)+iBdf(3,1))+133√57(Adf(5,1)+iBdf(5,1)) | −1013√733(Aff(6,6)+iBff(6,6)) | 0 | 111√143(Aff(4,4)+iBff(4,4))−5143√703(Aff(6,4)+iBff(6,4)) | 0 | −13√25(Aff(2,2)+iBff(2,2))+111√6(Aff(4,2)+iBff(4,2))−10429√7(Aff(6,2)+iBff(6,2)) | 0 | Aff(0,0)−13Aff(2,0)+111Aff(4,0)−5429Aff(6,0) | | + | |
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'', | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ | ||
+ | ^$ {Y_{0}^{(0)}} | \text{Ass}(0, | ||
+ | ^$ {Y_{-1}^{(1)}} |\color{darkred}{ | ||
+ | ^$ {Y_{0}^{(1)}} |\color{darkred}{ | ||
+ | ^$ {Y_{1}^{(1)}} |\color{darkred}{ | ||
+ | ^$ {Y_{-2}^{(2)}} | \frac{\text{Asd}(2, | ||
+ | ^$ {Y_{-1}^{(2)}} | 0 |\color{darkred}{ | ||
+ | ^$ {Y_{0}^{(2)}} | \frac{\text{Asd}(2, | ||
+ | ^$ {Y_{1}^{(2)}} | 0 |\color{darkred}{ | ||
+ | ^$ {Y_{2}^{(2)}} | \frac{\text{Asd}(2, | ||
+ | ^$ {Y_{-3}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{-2}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{-1}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{0}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{1}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{2}^{(3)}} |\color{darkred}{ | ||
+ | ^$ {Y_{3}^{(3)}} |\color{darkred}{ | ||
Line 192: | Line 244: | ||
### | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ Y(0)0 ^ Y(1)−1 ^ Y(1)0 ^ Y(1)1 ^ Y(2)−2 ^ Y(2)−1 ^ Y(2)0 ^ Y(2)1 ^ Y(2)2 ^ Y(3)−3 ^ Y(3)−2 ^ Y(3)−1 ^ Y(3)0 ^ Y(3)1 ^ Y(3)2 ^ Y(3)3 ^ | ||
+ | ^s|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^px|0|1√2|0|−1√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^py|0|i√2|0|i√2|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^pz|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0| | ||
+ | ^dx2−y2|0|0|0|0|1√2|0|0|0|1√2|0|0|0|0|0|0|0| | ||
+ | ^d3z2−r2|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0| | ||
+ | ^dyz|0|0|0|0|0|i√2|0|i√2|0|0|0|0|0|0|0|0| | ||
+ | ^dxz|0|0|0|0|0|1√2|0|−1√2|0|0|0|0|0|0|0|0| | ||
+ | ^dxy|0|0|0|0|i√2|0|0|0|−i√2|0|0|0|0|0|0|0| | ||
+ | ^fxyz|0|0|0|0|0|0|0|0|0|0|i√2|0|0|0|−i√2|0| | ||
+ | ^fx(5x2−r2)|0|0|0|0|0|0|0|0|0|√54|0|−√34|0|√34|0|−√54| | ||
+ | ^fy(5y2−r2)|0|0|0|0|0|0|0|0|0|−i√54|0|−i√34|0|−i√34|0|−i√54| | ||
+ | ^fz(5z2−r2)|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0| | ||
+ | ^fx(y2−z2)|0|0|0|0|0|0|0|0|0|−√34|0|−√54|0|√54|0|√34| | ||
+ | ^fy(z2−x2)|0|0|0|0|0|0|0|0|0|−i√34|0|i√54|0|i√54|0|−i√34| | ||
+ | ^fz(x2−y2)|0|0|0|0|0|0|0|0|0|0|1√2|0|0|0|1√2|0| | ||
Line 200: | Line 279: | ||
### | ### | ||
+ | After rotation we find | ||
### | ### | ||
- | ===== Potential for s orbitals ===== | ||
- | ===== Potential for p orbitals ===== | ||
- | ===== Potential for d orbitals ===== | + | ### |
- | ===== Potential for f orbitals ===== | + | | ^ s ^ px ^ py ^ pz ^ dx2−y2 ^ d3z2−r2 ^ dyz ^ dxz ^ dxy ^ fxyz ^ fx(5x2−r2) ^ fy(5y2−r2) ^ fz(5z2−r2) ^ fx(y2−z2) ^ fy(z2−x2) ^ fz(x2−y2) ^ |
+ | ^s|Ass(0,0)|−√23Asp(1,1)|√23Bsp(1,1)|0|√25Asd(2,2)|Asd(2,0)√5|0|0|−√25Bsd(2,2)|0|12√37Asf(3,1)−12√57Asf(3,3)|−12√37Bsf(3,1)−12√57Bsf(3,3)|0|12√57Asf(3,1)+12√37Asf(3,3)|12√57Bsf(3,1)−12√37Bsf(3,3)|0| | ||
+ | ^px|−√23Asp(1,1)|App(0,0)−15App(2,0)+15√6App(2,2)|−15√6Bpp(2,2)|0|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|√215Apd(1,1)−6Apd(3,1)7√5|0|0|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|0|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|0|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|0| | ||
+ | ^py|√23Bsp(1,1)|−15√6Bpp(2,2)|App(0,0)−15App(2,0)−15√6App(2,2)|0|−√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3)|6Bpd(3,1)7√5−√215Bpd(1,1)|0|0|−√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3)|0|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0| | ||
+ | ^pz|0|0|0|App(0,0)+25App(2,0)|0|0|√25Bpd(1,1)+47√35Bpd(3,1)|−√25Apd(1,1)−47√35Apd(3,1)|0|−√635Bpf(2,2)−23√27Bpf(4,2)|0|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|√635Apf(2,2)+23√27Apf(4,2)| | ||
+ | ^dx2−y2|√25Asd(2,2)|−√25Apd(1,1)+17√35Apd(3,1)−37Apd(3,3)|−√25Bpd(1,1)+17√35Bpd(3,1)+37Bpd(3,3)|0|Add(0,0)−27Add(2,0)+121Add(4,0)+13√107Add(4,4)|17√103Add(4,2)−27√2Add(2,2)|0|0|−13√107Bdd(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|0| | ||
+ | ^d3z2−r2|Asd(2,0)√5|√215Apd(1,1)−6Apd(3,1)7√5|6Bpd(3,1)7√5−√215Bpd(1,1)|0|17√103Add(4,2)−27√2Add(2,2)|Add(0,0)+27Add(2,0)+27Add(4,0)|0|0|27√2Bdd(2,2)−17√103Bdd(4,2)|0|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0| | ||
+ | ^dyz|0|0|0|√25Bpd(1,1)+47√35Bpd(3,1)|0|0|Add(0,0)+17Add(2,0)−17√6Add(2,2)−421Add(4,0)−221√10Add(4,2)|−17√6Bdd(2,2)−221√10Bdd(4,2)|0|−√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3)|0|0|−√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1)|0|0|−√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3)| | ||
+ | ^dxz|0|0|0|−√25Apd(1,1)−47√35Apd(3,1)|0|0|−17√6Bdd(2,2)−221√10Bdd(4,2)|Add(0,0)+17Add(2,0)+17√6Add(2,2)−421Add(4,0)+221√10Add(4,2)|0|√27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3)|0|0|√635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1)|0|0|−√27Adf(1,1)−Adf(3,1)√21−13√57Adf(3,3)+211√1021Adf(5,1)−433√5Adf(5,3)| | ||
+ | ^dxy|−√25Bsd(2,2)|√25Bpd(1,1)−17√35Bpd(3,1)+37Bpd(3,3)|−√25Apd(1,1)+17√35Apd(3,1)+37Apd(3,3)|0|−13√107Bdd(4,4)|27√2Bdd(2,2)−17√103Bdd(4,2)|0|0|Add(0,0)−27Add(2,0)+121Add(4,0)−13√107Add(4,4)|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0| | ||
+ | ^fxyz|0|0|0|−√635Bpf(2,2)−23√27Bpf(4,2)|0|0|−√27Adf(1,1)−Adf(3,1)√21+13√57Adf(3,3)+211√1021Adf(5,1)+433√5Adf(5,3)|√27Bdf(1,1)+Bdf(3,1)√21+13√57Bdf(3,3)−211√1021Bdf(5,1)+433√5Bdf(5,3)|0|Aff(0,0)−733Aff(4,0)−133√70Aff(4,4)+10143Aff(6,0)−10143√14Aff(6,4)|0|0|23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2)|0|0|−133√70Bff(4,4)−10143√14Bff(6,4)| | ||
+ | ^fx(5x2−r2)|12√37Asf(3,1)−12√57Asf(3,3)|−310√37Apf(2,0)+9Apf(2,2)5√14+Apf(4,0)2√21−13√1021Apf(4,2)+13√56Apf(4,4)|35√27Bpf(2,2)+13√542Bpf(4,2)−13√56Bpf(4,4)|0|−3√370Adf(1,1)+11Adf(3,1)6√35−Adf(3,3)2√21−533√27Adf(5,1)+5Adf(5,3)22√3−522√53Adf(5,5)|3Adf(1,1)√70+12√335Adf(3,1)+5Adf(3,3)6√7+511√314Adf(5,1)−533Adf(5,3)|0|0|−√635Bdf(1,1)−Bdf(3,1)6√35+Bdf(3,3)2√21+5Bdf(5,1)33√14−5Bdf(5,3)22√3+522√53Bdf(5,5)|0|Aff(0,0)−215Aff(2,0)+25√23Aff(2,2)+344Aff(4,0)−111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716+25572√353Aff(6,2)−25286√72Aff(6,4)+2552√733Aff(6,6)|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|0| | ||
+ | ^fy(5y2−r2)|−12√37Bsf(3,1)−12√57Bsf(3,3)|35√27Bpf(2,2)+13√542Bpf(4,2)+13√56Bpf(4,4)|−310√37Apf(2,0)−9Apf(2,2)5√14+Apf(4,0)2√21+13√1021Apf(4,2)+13√56Apf(4,4)|0|−3√370Bdf(1,1)+11Bdf(3,1)6√35+Bdf(3,3)2√21−533√27Bdf(5,1)−5Bdf(5,3)22√3−522√53Bdf(5,5)|−3Bdf(1,1)√70−12√335Bdf(3,1)+5Bdf(3,3)6√7−511√314Bdf(5,1)−533Bdf(5,3)|0|0|√635Adf(1,1)+Adf(3,1)6√35+Adf(3,3)2√21−5Adf(5,1)33√14−5Adf(5,3)22√3−522√53Adf(5,5)|0|Bff(2,2)5√6−111√10Bff(4,2)−5572√353Bff(6,2)+2552√733Bff(6,6)|Aff(0,0)−215Aff(2,0)−25√23Aff(2,2)+344Aff(4,0)+111√52Aff(4,2)+122√352Aff(4,4)−125Aff(6,0)1716−25572√353Aff(6,2)−25286√72Aff(6,4)−2552√733Aff(6,6)|0|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0| | ||
+ | ^fz(5z2−r2)|0|0|0|35√37Apf(2,0)+4Apf(4,0)3√21|0|0|−√635Bdf(1,1)+2Bdf(3,1)3√35+2033√27Bdf(5,1)|√635Adf(1,1)−2Adf(3,1)3√35−2033√27Adf(5,1)|0|23√25Bff(2,2)+111√23Bff(4,2)−40429√7Bff(6,2)|0|0|Aff(0,0)+415Aff(2,0)+211Aff(4,0)+100429Aff(6,0)|0|0|−23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2)| | ||
+ | ^fx(y2−z2)|12√57Asf(3,1)+12√37Asf(3,3)|−3Apf(2,0)2√35−√370Apf(2,2)+16√57Apf(4,0)−13√27Apf(4,2)−Apf(4,4)3√2|−√635Bpf(2,2)+Bpf(4,2)√14+Bpf(4,4)3√2|0|Adf(1,1)√14+Adf(3,1)2√21−16√57Adf(3,3)−111√1021Adf(5,1)+566√5Adf(5,3)+522Adf(5,5)|√314Adf(1,1)+Adf(3,1)2√7−12√521Adf(3,3)+511√514Adf(5,1)+111√53Adf(5,3)|0|0|√27Bdf(1,1)−12√37Bdf(3,1)+16√57Bdf(3,3)+111√1514Bdf(5,1)−566√5Bdf(5,3)−522Bdf(5,5)|0|Aff(2,0)√15+13√25Aff(2,2)−144√53Aff(4,0)+Aff(4,2)11√6+122√76Aff(4,4)−35572√53Aff(6,0)+85√7Aff(6,2)1716−5286√356Aff(6,4)−552√3511Aff(6,6)|−Bff(2,2)3√10−211√23Bff(4,2)+111√143Bff(4,4)−5132√7Bff(6,2)−5143√703Bff(6,4)−552√3511Bff(6,6)|0|Aff(0,0)+7132Aff(4,0)+733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)+5572√105Aff(6,2)+25286√72Aff(6,4)+552√2111Aff(6,6)|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|0| | ||
+ | ^fy(z2−x2)|12√57Bsf(3,1)−12√37Bsf(3,3)|√635Bpf(2,2)−Bpf(4,2)√14+Bpf(4,4)3√2|3Apf(2,0)2√35−√370Apf(2,2)−16√57Apf(4,0)−13√27Apf(4,2)+Apf(4,4)3√2|0|−Bdf(1,1)√14−Bdf(3,1)2√21−16√57Bdf(3,3)+111√1021Bdf(5,1)+566√5Bdf(5,3)−522Bdf(5,5)|√314Bdf(1,1)+Bdf(3,1)2√7+12√521Bdf(3,3)+511√514Bdf(5,1)−111√53Bdf(5,3)|0|0|√27Adf(1,1)−12√37Adf(3,1)−16√57Adf(3,3)+111√1514Adf(5,1)+566√5Adf(5,3)−522Adf(5,5)|0|Bff(2,2)3√10+211√23Bff(4,2)+111√143Bff(4,4)+5132√7Bff(6,2)−5143√703Bff(6,4)+552√3511Bff(6,6)|−Aff(2,0)√15+13√25Aff(2,2)+144√53Aff(4,0)+Aff(4,2)11√6−122√76Aff(4,4)+35572√53Aff(6,0)+85√7Aff(6,2)1716+5286√356Aff(6,4)−552√3511Aff(6,6)|0|Bff(2,2)√6−133√10Bff(4,2)+35572√353Bff(6,2)−552√2111Bff(6,6)|Aff(0,0)+7132Aff(4,0)−733√52Aff(4,2)−122√352Aff(4,4)−544Aff(6,0)−5572√105Aff(6,2)+25286√72Aff(6,4)−552√2111Aff(6,6)|0| | ||
+ | ^fz(x2−y2)|0|0|0|√635Apf(2,2)+23√27Apf(4,2)|0|0|−√27Bdf(1,1)−Bdf(3,1)√21+13√57Bdf(3,3)+211√1021Bdf(5,1)+433√5Bdf(5,3)|−√27Adf(1,1)−Adf(3,1)√21−13√57Adf(3,3)+211√1021Adf(5,1)−433√5Adf(5,3)|0|−133√70Bff(4,4)−10143√14Bff(6,4)|0|0|−23√25Aff(2,2)−111√23Aff(4,2)+40429√7Aff(6,2)|0|0|Aff(0,0)−733Aff(4,0)+133√70Aff(4,4)+10143Aff(6,0)+10143√14Aff(6,4)| | ||
- | ===== Potential for s-p orbital mixing ===== | ||
- | ===== Potential for s-d orbital mixing ===== | + | ### |
- | ===== Potential | + | ===== Coupling |
- | ===== Potential for p-d orbital mixing ===== | ||
- | ===== Potential for p-f orbital mixing ===== | ||
- | ===== Potential for d-f orbital mixing ===== | + | ### |
+ | |||
+ | Although the parameters Al″ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'. | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ap} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \text{Ap} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ \text{s} ^ | ||
+ | ^ \text{s} | \text{Ap} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{0}^{(0)}} ^ | ||
+ | ^ \text{s} | 1 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Ap} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2 \sqrt{\pi }} | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/3)*(Eapp + Eapx + Eapy)} , | ||
+ | {2, 0, (5/ | ||
+ | {2, 2, (5/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{\text{Eapx}+\text{Eapy}}{2} | 0 | \frac{1}{2} (-\text{Eapx}+\text{Eapy}-2 i \text{Mapxy}) | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \text{Eapp} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | \frac{1}{2} (-\text{Eapx}+\text{Eapy}+2 i \text{Mapxy}) | 0 | \frac{\text{Eapx}+\text{Eapy}}{2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ p_x | \text{Eapx} | \text{Mapxy} | 0 | | ||
+ | ^ p_y | \text{Mapxy} | \text{Eapy} | 0 | | ||
+ | ^ p_z | 0 | 0 | \text{Eapp} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ p_x | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | | ||
+ | ^ p_y | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | | ||
+ | ^ p_z | 0 | 1 | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eapx} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} x | ::: | | ||
+ | ^ ^\text{Eapy} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} y | ::: | | ||
+ | ^ ^\text{Eapp} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (1/ | ||
+ | {2, 2, (1/ | ||
+ | | ||
+ | {4, 0, (-3/ | ||
+ | {4, 2, (3)*((1/ | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | \frac{\text{Eapx2y2}+\text{Eapxy}}{2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}+2 i \text{Mapx2y2xy}) | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}-2 i \text{Mappyzxz}) | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \text{Eapz2} | 0 | \frac{\text{Mapx2y2z2}+i \text{Mapz2xy}}{\sqrt{2}} | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | \frac{1}{2} (-\text{Eappxz}+\text{Eappyz}+2 i \text{Mappyzxz}) | 0 | \frac{\text{Eappxz}+\text{Eappyz}}{2} | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | \frac{1}{2} (\text{Eapx2y2}-\text{Eapxy}-2 i \text{Mapx2y2xy}) | 0 | \frac{\text{Mapx2y2z2}-i \text{Mapz2xy}}{\sqrt{2}} | 0 | \frac{\text{Eapx2y2}+\text{Eapxy}}{2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ d_{x^2-y^2} | \text{Eapx2y2} | \text{Mapx2y2z2} | 0 | 0 | \text{Mapx2y2xy} | | ||
+ | ^ d_{3z^2-r^2} | \text{Mapx2y2z2} | \text{Eapz2} | 0 | 0 | \text{Mapz2xy} | | ||
+ | ^ d_{\text{yz}} | 0 | 0 | \text{Eappyz} | \text{Mappyzxz} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | 0 | \text{Mappyzxz} | \text{Eappxz} | 0 | | ||
+ | ^ d_{\text{xy}} | \text{Mapx2y2xy} | \text{Mapz2xy} | 0 | 0 | \text{Eapxy} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ d_{x^2-y^2} | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | | ||
+ | ^ d_{3z^2-r^2} | 0 | 0 | 1 | 0 | 0 | | ||
+ | ^ d_{\text{yz}} | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xz}} | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | | ||
+ | ^ d_{\text{xy}} | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eapx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right) | ::: | | ||
+ | ^ ^\text{Eapz2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappyz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} y z | ::: | | ||
+ | ^ ^\text{Eappxz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x z | ::: | | ||
+ | ^ ^\text{Eapxy} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{15}{\pi }} x y | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & (k\neq 6\land (((k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2))\land k\neq 4)\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4)))\lor (m\neq -6\land m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4\land m\neq 6) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (-5/ | ||
+ | | ||
+ | {2, 2, (5/ | ||
+ | {4, 0, (3/ | ||
+ | {4, 2, (3/ | ||
+ | | ||
+ | | ||
+ | {4, 4, (3/ | ||
+ | {6, 0, (-13/ | ||
+ | {6, 2, (13/ | ||
+ | | ||
+ | | ||
+ | {6, 4, (-13/ | ||
+ | | ||
+ | {6, 6, (13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-3}^{(3)}} | \frac{1}{16} \left(5 \text{Eappx3}+3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}+5 i \text{Mappx3y3}+i \sqrt{15} \text{Mappx3yz2x2}-3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}-i \text{Mappy3xy2z2})\right)\right) | | ||
+ | ^ {Y_{-2}^{(3)}} | 0 | \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}+2 i \text{Mappxyzzx2y2}) | 0 | | ||
+ | ^ {Y_{-1}^{(3)}} | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eappx3}+5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \left(\sqrt{15} \text{Mappx3xy2z2}+3 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}-5 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}-4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | | ||
+ | ^ {Y_{0}^{(3)}} | 0 | \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \text{Eappz3} | 0 | \frac{\text{Mappz3zx2y2}+i \text{Mappxyzz3}}{\sqrt{2}} | 0 | | ||
+ | ^ {Y_{1}^{(3)}} | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-3 \text{Eappx3}-5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}-2 \sqrt{15} \text{Mappx3xy2z2}+2 i \left(3 \text{Mappx3y3}-\sqrt{15} \text{Mappx3yz2x2}-5 \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3xy2z2}+i \text{Mappy3yz2x2})\right)\right) | 0 | \frac{1}{16} \left(3 \text{Eappx3}+5 \text{Eappxy2z2}+3 \text{Eappy3}+5 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappx3xy2z2}-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}+2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}+i \text{Mappy3yz2x2}\right)\right) | | ||
+ | ^ {Y_{2}^{(3)}} | 0 | \frac{1}{2} (-\text{Eappxyz}+\text{Eappzx2y2}-2 i \text{Mappxyzzx2y2}) | 0 | \frac{\text{Mappz3zx2y2}-i \text{Mappxyzz3}}{\sqrt{2}} | 0 | \frac{\text{Eappxyz}+\text{Eappzx2y2}}{2} | 0 | | ||
+ | ^ {Y_{3}^{(3)}} | \frac{1}{16} \left(-5 \text{Eappx3}-3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \left(\sqrt{15} \text{Mappx3xy2z2}-5 i \text{Mappx3y3}-i \sqrt{15} \text{Mappx3yz2x2}+3 i \text{Mappxy2z2yz2x2}+\sqrt{15} (\text{Mappy3yz2x2}+i \text{Mappy3xy2z2})\right)\right) | 0 | \frac{1}{16} \left(\sqrt{15} \text{Eappx3}-\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}+2 (\text{Mappx3xy2z2}+4 i (\text{Mappx3yz2x2}+\text{Mappy3xy2z2})-\text{Mappy3yz2x2})\right) | 0 | \frac{1}{16} \left(-\sqrt{15} \text{Eappx3}+\sqrt{15} \text{Eappxy2z2}+\sqrt{15} \text{Eappy3}-\sqrt{15} \text{Eappyz2x2}-2 \text{Mappx3xy2z2}-2 i \left(\sqrt{15} \text{Mappx3y3}-\text{Mappx3yz2x2}+\sqrt{15} \text{Mappxy2z2yz2x2}+\text{Mappy3xy2z2}-i \text{Mappy3yz2x2}\right)\right) | 0 | \frac{1}{16} \left(5 \text{Eappx3}+3 \text{Eappxy2z2}+5 \text{Eappy3}+3 \text{Eappyz2x2}+2 \sqrt{15} (\text{Mappy3yz2x2}-\text{Mappx3xy2z2})\right) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ f_{\text{xyz}} | \text{Eappxyz} | 0 | 0 | \text{Mappxyzz3} | 0 | 0 | \text{Mappxyzzx2y2} | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} | 0 | \text{Eappx3} | \text{Mappx3y3} | 0 | \text{Mappx3xy2z2} | \text{Mappx3yz2x2} | 0 | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} | 0 | \text{Mappx3y3} | \text{Eappy3} | 0 | \text{Mappy3xy2z2} | \text{Mappy3yz2x2} | 0 | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} | \text{Mappxyzz3} | 0 | 0 | \text{Eappz3} | 0 | 0 | \text{Mappz3zx2y2} | | ||
+ | ^ f_{x\left(y^2-z^2\right)} | 0 | \text{Mappx3xy2z2} | \text{Mappy3xy2z2} | 0 | \text{Eappxy2z2} | \text{Mappxy2z2yz2x2} | 0 | | ||
+ | ^ f_{y\left(z^2-x^2\right)} | 0 | \text{Mappx3yz2x2} | \text{Mappy3yz2x2} | 0 | \text{Mappxy2z2yz2x2} | \text{Eappyz2x2} | 0 | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | \text{Mappxyzzx2y2} | 0 | 0 | \text{Mappz3zx2y2} | 0 | 0 | \text{Eappzx2y2} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ f_{\text{xyz}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 | | ||
+ | ^ f_{x\left(5x^2-r^2\right)} | \frac{\sqrt{5}}{4} | 0 | -\frac{\sqrt{3}}{4} | 0 | \frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | | ||
+ | ^ f_{y\left(5y^2-r^2\right)} | -\frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{3}}{4} | 0 | -\frac{i \sqrt{5}}{4} | | ||
+ | ^ f_{z\left(5z^2-r^2\right)} | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | ||
+ | ^ f_{x\left(y^2-z^2\right)} | -\frac{\sqrt{3}}{4} | 0 | -\frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{5}}{4} | 0 | \frac{\sqrt{3}}{4} | | ||
+ | ^ f_{y\left(z^2-x^2\right)} | -\frac{i \sqrt{3}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | \frac{i \sqrt{5}}{4} | 0 | -\frac{i \sqrt{3}}{4} | | ||
+ | ^ f_{z\left(x^2-y^2\right)} | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^\text{Eappxyz} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z | ::: | | ||
+ | ^ ^\text{Eappx3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eappy3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right) | ::: | | ||
+ | ^ ^\text{Eappz3} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta )) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right) | ::: | | ||
+ | ^ ^\text{Eappxy2z2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |-\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappyz2x2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right) | ::: | | ||
+ | ^ ^\text{Eappzx2y2} | {{: | ||
+ | |\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi ) | ::: | | ||
+ | |\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}} |\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right) | ::: | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-p orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 1\lor (m\neq -1\land m\neq 1) \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-1}^{(1)}} ^ {Y_{0}^{(1)}} ^ {Y_{1}^{(1)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | -\frac{A(1,1)+i B(1,1)}{\sqrt{3}} | 0 | \frac{A(1,1)-i B(1,1)}{\sqrt{3}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ p_x ^ p_y ^ p_z ^ | ||
+ | ^ \text{s} | -\sqrt{\frac{2}{3}} A(1,1) | \sqrt{\frac{2}{3}} B(1,1) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | \frac{A(2,2)+i B(2,2)}{\sqrt{5}} | 0 | \frac{A(2,0)}{\sqrt{5}} | 0 | \frac{A(2,2)-i B(2,2)}{\sqrt{5}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ \text{s} | \sqrt{\frac{2}{5}} A(2,2) | \frac{A(2,0)}{\sqrt{5}} | 0 | 0 | -\sqrt{\frac{2}{5}} B(2,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{3,-1, (-1)*(A(3, | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{0}^{(0)}} | -\frac{A(3,3)+i B(3,3)}{\sqrt{7}} | 0 | -\frac{A(3,1)+i B(3,1)}{\sqrt{7}} | 0 | \frac{A(3,1)-i B(3,1)}{\sqrt{7}} | 0 | \frac{A(3,3)-i B(3,3)}{\sqrt{7}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ \text{s} | 0 | \frac{1}{14} \left(\sqrt{21} A(3,1)-\sqrt{35} A(3,3)\right) | -\frac{\sqrt{3} B(3,1)+\sqrt{5} B(3,3)}{2 \sqrt{7}} | 0 | \frac{\sqrt{5} A(3,1)+\sqrt{3} A(3,3)}{2 \sqrt{7}} | \frac{1}{14} \left(\sqrt{35} B(3,1)-\sqrt{21} B(3,3)\right) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 3\land (k\neq 1\lor (m\neq -1\land m\neq 1)))\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-2}^{(2)}} ^ {Y_{-1}^{(2)}} ^ {Y_{0}^{(2)}} ^ {Y_{1}^{(2)}} ^ {Y_{2}^{(2)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{1}{7} \sqrt{\frac{3}{5}} (A(3,1)+i B(3,1))-\sqrt{\frac{2}{5}} (A(1,1)+i B(1,1)) | 0 | \frac{1}{105} \left(7 \sqrt{15} (A(1,1)-i B(1,1))-9 \sqrt{10} (A(3,1)-i B(3,1))\right) | 0 | -\frac{3}{7} (A(3,3)-i B(3,3)) | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | -\frac{A(1,1)+i B(1,1)}{\sqrt{5}}-\frac{2}{7} \sqrt{\frac{6}{5}} (A(3,1)+i B(3,1)) | 0 | \frac{7 A(1,1)+2 \sqrt{6} A(3,1)-i \left(7 B(1,1)+2 \sqrt{6} B(3,1)\right)}{7 \sqrt{5}} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | \frac{3}{7} (A(3,3)+i B(3,3)) | 0 | \frac{3}{7} \sqrt{\frac{2}{5}} (A(3,1)+i B(3,1))-\frac{A(1,1)+i B(1,1)}{\sqrt{15}} | 0 | \sqrt{\frac{2}{5}} (A(1,1)-i B(1,1))-\frac{1}{7} \sqrt{\frac{3}{5}} (A(3,1)-i B(3,1)) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ d_{x^2-y^2} ^ d_{3z^2-r^2} ^ d_{\text{yz}} ^ d_{\text{xz}} ^ d_{\text{xy}} ^ | ||
+ | ^ p_x | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)-15 A(3,3)\right) | \sqrt{\frac{2}{15}} A(1,1)-\frac{6 A(3,1)}{7 \sqrt{5}} | 0 | 0 | \sqrt{\frac{2}{5}} B(1,1)-\frac{1}{7} \sqrt{\frac{3}{5}} B(3,1)+\frac{3}{7} B(3,3) | | ||
+ | ^ p_y | \frac{1}{35} \left(-7 \sqrt{10} B(1,1)+\sqrt{15} B(3,1)+15 B(3,3)\right) | \frac{6 B(3,1)}{7 \sqrt{5}}-\sqrt{\frac{2}{15}} B(1,1) | 0 | 0 | \frac{1}{35} \left(-7 \sqrt{10} A(1,1)+\sqrt{15} A(3,1)+15 A(3,3)\right) | | ||
+ | ^ p_z | 0 | 0 | \sqrt{\frac{2}{5}} B(1,1)+\frac{4}{7} \sqrt{\frac{3}{5}} B(3,1) | -\frac{1}{7} \sqrt{\frac{2}{5}} \left(7 A(1,1)+2 \sqrt{6} A(3,1)\right) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 4\land (k\neq 2\lor (m\neq -2\land m\neq 0\land m\neq 2)))\lor (m\neq -4\land m\neq -2\land m\neq 0\land m\neq 2\land m\neq 4) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | | ||
+ | {2, 2, A(2,2) + (I)*(B(2, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {4, 2, A(4,2) + (I)*(B(4, | ||
+ | | ||
+ | {4, 4, A(4,4) + (I)*(B(4, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-1}^{(1)}} | \frac{3 (A(2,2)+i B(2,2))}{\sqrt{35}}-\frac{A(4,2)+i B(4,2)}{3 \sqrt{21}} | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)-i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)-i B(4,2)) | 0 | -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}} | | ||
+ | ^ {Y_{0}^{(1)}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)+i B(2,2))+\frac{2 (A(4,2)+i B(4,2))}{3 \sqrt{7}} | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | \sqrt{\frac{3}{35}} (A(2,2)-i B(2,2))+\frac{2 (A(4,2)-i B(4,2))}{3 \sqrt{7}} | 0 | | ||
+ | ^ {Y_{1}^{(1)}} | -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} | 0 | \frac{1}{5} \sqrt{\frac{3}{7}} (A(2,2)+i B(2,2))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(4,2)+i B(4,2)) | 0 | \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) | 0 | \frac{3 (A(2,2)-i B(2,2))}{\sqrt{35}}-\frac{A(4,2)-i B(4,2)}{3 \sqrt{21}} | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ p_x | 0 | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)+81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)-2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)+7 B(4,4)\right)\right) | 0 | \frac{1}{210} \left(-9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)+5 \left(\sqrt{35} A(4,0)-2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | \sqrt{\frac{6}{35}} B(2,2)-\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | 0 | | ||
+ | ^ p_y | 0 | \frac{1}{630} \left(54 \sqrt{14} B(2,2)+5 \sqrt{30} \left(\sqrt{7} B(4,2)-7 B(4,4)\right)\right) | \frac{1}{630} \left(-27 \sqrt{21} A(2,0)-81 \sqrt{14} A(2,2)+5 \left(3 \sqrt{21} A(4,0)+2 \sqrt{210} A(4,2)+7 \sqrt{30} A(4,4)\right)\right) | 0 | -\sqrt{\frac{6}{35}} B(2,2)+\frac{B(4,2)}{\sqrt{14}}+\frac{B(4,4)}{3 \sqrt{2}} | \frac{1}{210} \left(9 \sqrt{35} A(2,0)-3 \sqrt{210} A(2,2)-5 \left(\sqrt{35} A(4,0)+2 \sqrt{14} A(4,2)-7 \sqrt{2} A(4,4)\right)\right) | 0 | | ||
+ | ^ p_z | -\sqrt{\frac{6}{35}} B(2,2)-\frac{2}{3} \sqrt{\frac{2}{7}} B(4,2) | 0 | 0 | \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} | 0 | 0 | \sqrt{\frac{6}{35}} A(2,2)+\frac{2}{3} \sqrt{\frac{2}{7}} A(4,2) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 5\land (((k\neq 1\lor (m\neq -1\land m\neq 1))\land k\neq 3)\lor (m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3)))\lor (m\neq -5\land m\neq -3\land m\neq -1\land m\neq 1\land m\neq 3\land m\neq 5) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_Cs_Z.Quanty> | ||
+ | |||
+ | Akm = {{1,-1, (-1)*(A(1, | ||
+ | {1, 1, A(1,1) + (I)*(B(1, | ||
+ | | ||
+ | {3, 1, A(3,1) + (I)*(B(3, | ||
+ | | ||
+ | {3, 3, A(3,3) + (I)*(B(3, | ||
+ | | ||
+ | {5, 1, A(5,1) + (I)*(B(5, | ||
+ | | ||
+ | {5, 3, A(5,3) + (I)*(B(5, | ||
+ | | ||
+ | {5, 5, A(5,5) + (I)*(B(5, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ {Y_{-3}^{(3)}} ^ {Y_{-2}^{(3)}} ^ {Y_{-1}^{(3)}} ^ {Y_{0}^{(3)}} ^ {Y_{1}^{(3)}} ^ {Y_{2}^{(3)}} ^ {Y_{3}^{(3)}} ^ | ||
+ | ^ {Y_{-2}^{(2)}} | -\sqrt{\frac{3}{7}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)+i B(3,1))-\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{35} (A(1,1)-i B(1,1))-22 \sqrt{210} (A(3,1)-i B(3,1))+25 \sqrt{21} (A(5,1)-i B(5,1))}{1155} | 0 | \frac{5}{33} \sqrt{2} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)-i B(3,3)) | 0 | \frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)-i B(5,5)) | | ||
+ | ^ {Y_{-1}^{(2)}} | 0 | -\sqrt{\frac{2}{7}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{21}}+\frac{2}{11} \sqrt{\frac{10}{21}} (A(5,1)+i B(5,1)) | 0 | \frac{33 \sqrt{105} (A(1,1)-i B(1,1))-11 \sqrt{70} (A(3,1)-i B(3,1))-100 \sqrt{7} (A(5,1)-i B(5,1))}{1155} | 0 | -\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3))-\frac{4}{33} \sqrt{5} (A(5,3)-i B(5,3)) | 0 | | ||
+ | ^ {Y_{0}^{(2)}} | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))-\frac{2}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{6}{35}} (A(1,1)+i B(1,1))-\frac{A(3,1)+i B(3,1)}{\sqrt{35}}-\frac{5}{11} \sqrt{\frac{2}{7}} (A(5,1)+i B(5,1)) | 0 | \frac{1}{385} \left(11 \sqrt{210} (A(1,1)-i B(1,1))+11 \sqrt{35} (A(3,1)-i B(3,1))+25 \sqrt{14} (A(5,1)-i B(5,1))\right) | 0 | \frac{2}{33} \sqrt{5} (A(5,3)-i B(5,3))-\frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)-i B(3,3)) | | ||
+ | ^ {Y_{1}^{(2)}} | 0 | \frac{1}{3} \sqrt{\frac{5}{7}} (A(3,3)+i B(3,3))+\frac{4}{33} \sqrt{5} (A(5,3)+i B(5,3)) | 0 | -\sqrt{\frac{3}{35}} (A(1,1)+i B(1,1))+\frac{1}{3} \sqrt{\frac{2}{35}} (A(3,1)+i B(3,1))+\frac{20 (A(5,1)+i B(5,1))}{33 \sqrt{7}} | 0 | \frac{1}{231} \left(33 \sqrt{14} (A(1,1)-i B(1,1))+11 \sqrt{21} (A(3,1)-i B(3,1))-2 \sqrt{210} (A(5,1)-i B(5,1))\right) | 0 | | ||
+ | ^ {Y_{2}^{(2)}} | -\frac{5}{11} \sqrt{\frac{2}{3}} (A(5,5)+i B(5,5)) | 0 | \frac{1}{3} \sqrt{\frac{2}{7}} (A(3,3)+i B(3,3))-\frac{5}{33} \sqrt{2} (A(5,3)+i B(5,3)) | 0 | -\frac{A(1,1)+i B(1,1)}{\sqrt{35}}+2 \sqrt{\frac{2}{105}} (A(3,1)+i B(3,1))-\frac{5 (A(5,1)+i B(5,1))}{11 \sqrt{21}} | 0 | \sqrt{\frac{3}{7}} (A(1,1)-i B(1,1))-\frac{1}{3} \sqrt{\frac{2}{7}} (A(3,1)-i B(3,1))+\frac{1}{33} \sqrt{\frac{5}{7}} (A(5,1)-i B(5,1)) | | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ^ f_{\text{xyz}} ^ f_{x\left(5x^2-r^2\right)} ^ f_{y\left(5y^2-r^2\right)} ^ f_{z\left(5z^2-r^2\right)} ^ f_{x\left(y^2-z^2\right)} ^ f_{y\left(z^2-x^2\right)} ^ f_{z\left(x^2-y^2\right)} ^ | ||
+ | ^ d_{x^2-y^2} | 0 | \frac{-99 \sqrt{210} A(1,1)+121 \sqrt{35} A(3,1)-5 \left(11 \sqrt{21} A(3,3)+10 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)+35 \sqrt{15} A(5,5)\right)}{2310} | \frac{-99 \sqrt{210} B(1,1)+121 \sqrt{35} B(3,1)+55 \sqrt{21} B(3,3)-50 \sqrt{14} B(5,1)-175 \sqrt{3} B(5,3)-175 \sqrt{15} B(5,5)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{14} A(1,1)+11 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)-2 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)+105 A(5,5)\right) | \frac{1}{462} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)-11 \sqrt{35} B(3,3)+2 \sqrt{210} B(5,1)+35 \sqrt{5} B(5,3)-105 B(5,5)\right) | 0 | | ||
+ | ^ d_{3z^2-r^2} | 0 | \frac{99 \sqrt{70} A(1,1)+33 \sqrt{105} A(3,1)+275 \sqrt{7} A(3,3)+75 \sqrt{42} A(5,1)-350 A(5,3)}{2310} | \frac{-99 \sqrt{70} B(1,1)-33 \sqrt{105} B(3,1)+275 \sqrt{7} B(3,3)-75 \sqrt{42} B(5,1)-350 B(5,3)}{2310} | 0 | \frac{1}{462} \left(33 \sqrt{42} A(1,1)+33 \sqrt{7} A(3,1)-11 \sqrt{105} A(3,3)+15 \sqrt{70} A(5,1)+14 \sqrt{15} A(5,3)\right) | \frac{1}{462} \left(33 \sqrt{42} B(1,1)+33 \sqrt{7} B(3,1)+11 \sqrt{105} B(3,3)+15 \sqrt{70} B(5,1)-14 \sqrt{15} B(5,3)\right) | 0 | | ||
+ | ^ d_{\text{yz}} | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)+28 A(5,3)\right)\right) | 0 | 0 | -\sqrt{\frac{6}{35}} B(1,1)+\frac{2 B(3,1)}{3 \sqrt{35}}+\frac{20}{33} \sqrt{\frac{2}{7}} B(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} B(1,1)-11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)+2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right) | | ||
+ | ^ d_{\text{xz}} | \frac{1}{231} \left(33 \sqrt{14} B(1,1)+11 \sqrt{21} B(3,1)+\sqrt{5} \left(11 \sqrt{7} B(3,3)-2 \sqrt{42} B(5,1)+28 B(5,3)\right)\right) | 0 | 0 | \sqrt{\frac{6}{35}} A(1,1)-\frac{2 A(3,1)}{3 \sqrt{35}}-\frac{20}{33} \sqrt{\frac{2}{7}} A(5,1) | 0 | 0 | \frac{1}{231} \left(-33 \sqrt{14} A(1,1)-11 \sqrt{21} A(3,1)+\sqrt{5} \left(-11 \sqrt{7} A(3,3)+2 \sqrt{42} A(5,1)-28 A(5,3)\right)\right) | | ||
+ | ^ d_{\text{xy}} | 0 | \frac{-66 \sqrt{210} B(1,1)-11 \sqrt{35} B(3,1)+5 \left(11 \sqrt{21} B(3,3)+5 \sqrt{14} B(5,1)-35 \sqrt{3} B(5,3)+35 \sqrt{15} B(5,5)\right)}{2310} | \frac{66 \sqrt{210} A(1,1)+11 \sqrt{35} A(3,1)+5 \left(11 \sqrt{21} A(3,3)-5 \sqrt{14} A(5,1)-35 \sqrt{3} A(5,3)-35 \sqrt{15} A(5,5)\right)}{2310} | 0 | \frac{1}{462} \left(66 \sqrt{14} B(1,1)-33 \sqrt{21} B(3,1)+11 \sqrt{35} B(3,3)+3 \sqrt{210} B(5,1)-35 \sqrt{5} B(5,3)-105 B(5,5)\right) | \frac{1}{462} \left(66 \sqrt{14} A(1,1)-33 \sqrt{21} A(3,1)-11 \sqrt{35} A(3,3)+3 \sqrt{210} A(5,1)+35 \sqrt{5} A(5,3)-105 A(5,5)\right) | 0 | | ||
+ | |||
+ | |||
+ | ### | ||
+ | </ | ||
===== Table of several point groups ===== | ===== Table of several point groups ===== |