Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:functions:potentialexpandedonclm [2018/01/10 23:20] Maurits W. Haverkortdocumentation:language_reference:functions:potentialexpandedonclm [2018/01/11 08:37] (current) Maurits W. Haverkort
Line 3: Line 3:
 ### ###
 Given the onsite energies of the orbitals of all possible irreducible representations a potential expanded on renormalised Spherical Harmonics is created.  Given the onsite energies of the orbitals of all possible irreducible representations a potential expanded on renormalised Spherical Harmonics is created. 
 +###
 +
 +###
 +Within crystal field or ligand field theory it is common practice to expand a potential on Spherical Harmonics. A potential expanded as such can be used to create a crystal field operator with the function NewOperator("C", ...). For more information see the documentation of the crystal field [[documentation:standard_operators:crystal_field|operator]]. 
 ### ###
  
Line 13: Line 17:
 ===== Output ===== ===== Output =====
  
-  * Akm : Table containing {{kmCoefficient}, {kmCoefficient}, ...}+  * Akm : Table containing "$\{\{k_1,m_1,A_{k_1,m_1}\},\{k_2,m_2,A_{k_2,m_2}\},...\}$" defining the angular part of the potential such that $\big\langle \varphi_{\tau_1}(\vec{r}) \big| V(\vec{r}) \big| \varphi_{\tau_2}(\vec{r}) \big\rangle = \sum_{k=0}^{\infty}\sum_{m=-k}^{k}  A_{k,m} \big\langle Y_{l_1,m_1} \big| C_{k,m} \big| Y_{l_2,m_2} \big\rangle$, with $\varphi_{\tau_1}(\vec{r})=R_{n_1,l_1}(r) Y_{l_1,m_1}(\theta\phi)$
  
 ===== Example ===== ===== Example =====
  
 ### ###
-Within crystal field or ligand field theory it is common practice to expand a potential on Spherical Harmonics. A potential expanded as such can be used to create a crystal field operator with the function NewOperator("C", ...). For more information see the documentation of the crystal field [[documentation:standard_operators:crystal_field|operator]]+The following example creates a potential expanded on renormalised spherical Harmonics for different point-groups and prints the expansion as well as the Hamiltonian for an pd and f shell that arises from this potentialThe energies of the orbitals of a given irreducible representation are set to arbitrary values. 
 +### 
 + 
 +### 
 +The example firstly defines three functions (for the p, d and f shell), that given a potential expanded on spherical harmonics print this potential, create an Hamiltonian on the basis of Spherical Harmonics and creates the Hamiltonian on a basis of Kubic Harmonics. The crystal field Hamiltonians are printed as a matrix, the basis functions used for this matrix are printed above the matrix
 ### ###
  
Print/export