for a wavefunction psi the method Randomize() will change all prefactors to random numbers. Real functions stay real, complex stay complex. Randomize does not add determinants to the basis.
We can define the following function: $$ |\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$ Randomization will turn $\psi$ into $$ |\psi\rangle = \left(\alpha a^{\dagger}_0 a^{\dagger}_1 + \beta a^{\dagger}_0 a^{\dagger}_2 + \gamma a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle. $$ with $\alpha$, $\beta$, and $\gamma$ random complex numbers.
NF=3 NB=0 psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+I)*sqrt(1/4)}}) print(psi) psi.Randomize() print(psi)
WaveFunction: Wave Function QComplex = 1 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor +I pre-factor Determinant 1 5.000000000000E-01 0.000000000000E+00 110 2 5.000000000000E-01 0.000000000000E+00 101 3 5.000000000000E-01 5.000000000000E-01 011 WaveFunction: Wave Function QComplex = 1 (Real==0 or Complex==1) N = 3 (Number of basis functions used to discribe psi) NFermionic modes = 3 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor +I pre-factor Determinant 1 4.123403010817E-01 -6.670525008798E-02 110 2 5.285982509213E-02 -4.533726157538E-01 101 3 -7.307037171865E-01 2.885430185954E-01 011