Transpose(a) gives the transposed of object a. Object a is not changed, but cloned before transposing.
A small example is:
dofile("../definitions.Quanty") Opp3 = Transpose(Opp2) print(Opp2) print(Opp3)
Operator: Ly QComplex = 1 (Real==0 or Complex==1 or Mixed==2) MaxLength = 2 (largest number of product of lader operators) NFermionic modes = 6 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis) NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis) Operator of Length 2 QComplex = 1 (Real==0 or Complex==1) N = 8 (number of operators of length 2) C 3 A 1 | 0.000000000000000E+00 -7.071067811865476E-01 C 1 A 3 | 0.000000000000000E+00 7.071067811865476E-01 C 2 A 0 | 0.000000000000000E+00 -7.071067811865476E-01 C 0 A 2 | 0.000000000000000E+00 7.071067811865476E-01 C 5 A 3 | 0.000000000000000E+00 -7.071067811865476E-01 C 3 A 5 | 0.000000000000000E+00 7.071067811865476E-01 C 4 A 2 | 0.000000000000000E+00 -7.071067811865476E-01 C 2 A 4 | 0.000000000000000E+00 7.071067811865476E-01 Operator: Ly QComplex = 1 (Real==0 or Complex==1 or Mixed==2) MaxLength = 2 (largest number of product of lader operators) NFermionic modes = 6 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis) NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis) Operator of Length 2 QComplex = 1 (Real==0 or Complex==1) N = 8 (number of operators of length 2) C 1 A 3 | 0.000000000000000E+00 -7.071067811865476E-01 C 3 A 1 | 0.000000000000000E+00 7.071067811865476E-01 C 0 A 2 | 0.000000000000000E+00 -7.071067811865476E-01 C 2 A 0 | 0.000000000000000E+00 7.071067811865476E-01 C 3 A 5 | 0.000000000000000E+00 -7.071067811865476E-01 C 5 A 3 | 0.000000000000000E+00 7.071067811865476E-01 C 2 A 4 | 0.000000000000000E+00 -7.071067811865476E-01 C 4 A 2 | 0.000000000000000E+00 7.071067811865476E-01