CreateFluorescenceYield($O_1$,$O_2$,$O_3$,$\psi$) calculates \begin{equation} \langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle, \end{equation} with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are:
description text
dofile("../definitions.Quanty") -- define an Hamiltonian (in this case a magnetic field of 6 tesla in the z direction) H = 6 * EnergyUnits.Tesla.value * (2*OppSz + OppLz) -- define a transition operator (in this case a pulsed magnetic field of 20 tesla in the x direction) T1 = 20 * EnergyUnits.Tesla.value * (2*OppSx + OppLx) -- define a ground-state (in this case a p electron with spin and angular momentum down) psigrd = psim1dn -- define a feritale operator to be able to calculate FY T2 = (2*OppSy + OppLy) -- calculate < psigrd | T1^dag 1/(w-i*G/2+E0-H^dag) T2^dag T2 1/(w+i*G/2+E0-H) T1 | psigrd > -- with E0 = <psigrd | H | psigrd > spec = CreateFluorescenceYield(H, T1, T2, psigrd,{{"NE",20}}) -- the real and imaginary=0 part on a fixed energy grid print(spec)
Start of LanczosTriDiagonalizeKrylovRR #Spectra: 1 Emin______Emax 3.038900445581885E-04 7.380186796413151E-04 EminPole__EmaxPole 3.473029080665012E-04 6.946058161330025E-04 dE________Gamma 2.170643175415633E-05 2.170643175415633E-04 Energy Re[0] Im[0] 3.038900445582E-04 1.445970424529857E+02 0.000000000000000E+00 3.255964763123E-04 1.522565191355002E+02 0.000000000000000E+00 3.473029080665E-04 1.492068011071571E+02 0.000000000000000E+00 3.690093398207E-04 1.352205128205129E+02 0.000000000000000E+00 3.907157715748E-04 1.147275532671071E+02 0.000000000000000E+00 4.124222033290E-04 9.357859982480973E+01 0.000000000000000E+00 4.341286350831E-04 7.573964497041422E+01 0.000000000000000E+00 4.558350668373E-04 6.273363774733638E+01 0.000000000000000E+00 4.775414985914E-04 5.465063752276871E+01 0.000000000000000E+00 4.992479303456E-04 5.113037565867757E+01 0.000000000000000E+00 5.209543620998E-04 5.189019343797783E+01 0.000000000000000E+00 5.426607938539E-04 5.693240410221549E+01 0.000000000000000E+00 5.643672256081E-04 6.658797814207658E+01 0.000000000000000E+00 5.860736573622E-04 8.143683409436844E+01 0.000000000000000E+00 6.077800891164E-04 1.020124757460593E+02 0.000000000000000E+00 6.294865208705E-04 1.280776228016981E+02 0.000000000000000E+00 6.511929526247E-04 1.573343041902881E+02 0.000000000000000E+00 6.728993843788E-04 1.842324786324788E+02 0.000000000000000E+00 6.946058161330E-04 2.010344009489918E+02 0.000000000000000E+00 7.163122478872E-04 2.024280037018893E+02 0.000000000000000E+00 7.380186796413E-04 1.895640527396284E+02 0.000000000000000E+00