Next revision | Previous revision |
physics_chemistry:point_groups:c4:orientation_z [2018/03/21 15:09] – created Stefano Agrestini | physics_chemistry:point_groups:c4:orientation_z [2018/04/06 09:11] (current) – Maurits W. Haverkort |
---|
====== Orientation z ====== | ~~CLOSETOC~~ |
| |
| ====== Orientation Z ====== |
| |
| ===== Symmetry Operations ===== |
| |
### | ### |
alligned paragraph text | |
| In the C4 Point Group, with orientation Z there are the following symmetry operations |
### | ### |
| |
===== Example ===== | ### |
| |
| {{:physics_chemistry:pointgroup:c4_z.png}} |
| |
### | ### |
description text | |
### | ### |
| |
==== Input ==== | ^ Operator ^ Orientation ^ |
<code Quanty Example.Quanty> | ^ $\text{E}$ | $\{0,0,0\}$ , | |
-- some example code | ^ $C_4$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , | |
| ^ $C_2$ | $\{0,0,1\}$ , | |
| |
| ### |
| |
| ===== Different Settings ===== |
| |
| ### |
| |
| * [[physics_chemistry:point_groups:c4:orientation_x|Point Group C4 with orientation X]] |
| * [[physics_chemistry:point_groups:c4:orientation_y|Point Group C4 with orientation Y]] |
| * [[physics_chemistry:point_groups:c4:orientation_z|Point Group C4 with orientation Z]] |
| |
| ### |
| |
| ===== Character Table ===== |
| |
| ### |
| |
| | $ $ ^ $ \text{E} \,{\text{(1)}} $ ^ $ C_4 \,{\text{(2)}} $ ^ $ C_2 \,{\text{(1)}} $ ^ |
| ^ $ \text{A} $ | $ 1 $ | $ 1 $ | $ 1 $ | |
| ^ $ \text{B} $ | $ 1 $ | $ -1 $ | $ 1 $ | |
| ^ $ \text{E} $ | $ 2 $ | $ 0 $ | $ -2 $ | |
| |
| ### |
| |
| ===== Product Table ===== |
| |
| ### |
| |
| | $ $ ^ $ \text{A} $ ^ $ \text{B} $ ^ $ \text{E} $ ^ |
| ^ $ \text{A} $ | $ \text{A} $ | $ \text{B} $ | $ \text{E} $ | |
| ^ $ \text{B} $ | $ \text{B} $ | $ \text{A} $ | $ \text{E} $ | |
| ^ $ \text{E} $ | $ \text{E} $ | $ \text{E} $ | $ 2 \text{A}+2 \text{B} $ | |
| |
| ### |
| |
| ===== Sub Groups with compatible settings ===== |
| |
| ### |
| |
| * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] |
| * [[physics_chemistry:point_groups:c2:orientation_z|Point Group C2 with orientation Z]] |
| |
| ### |
| |
| ===== Super Groups with compatible settings ===== |
| |
| ### |
| |
| * [[physics_chemistry:point_groups:c4h:orientation_z|Point Group C4h with orientation Z]] |
| * [[physics_chemistry:point_groups:c4v:orientation_zxy|Point Group C4v with orientation Zxy]] |
| * [[physics_chemistry:point_groups:d4d:orientation_zxy|Point Group D4d with orientation Zxy]] |
| * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]] |
| * [[physics_chemistry:point_groups:d4:orientation_zxy|Point Group D4 with orientation Zxy]] |
| * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]] |
| * [[physics_chemistry:point_groups:o:orientation_xyz|Point Group O with orientation XYZ]] |
| |
| ### |
| |
| ===== Invariant Potential expanded on renormalized spherical Harmonics ===== |
| |
| ### |
| |
| Any potential (function) can be written as a sum over spherical harmonics. |
| $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ |
| Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ |
| The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the C4 Point group with orientation Z the form of the expansion coefficients is: |
| |
| ### |
| |
| ==== Expansion ==== |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| A(0,0) & k=0\land m=0 \\ |
| A(1,0) & k=1\land m=0 \\ |
| A(2,0) & k=2\land m=0 \\ |
| A(3,0) & k=3\land m=0 \\ |
| A(4,4)-i B(4,4) & k=4\land m=-4 \\ |
| A(4,0) & k=4\land m=0 \\ |
| A(4,4)+i B(4,4) & k=4\land m=4 \\ |
| A(5,4)-i B(5,4) & k=5\land m=-4 \\ |
| A(5,0) & k=5\land m=0 \\ |
| A(5,4)+i B(5,4) & k=5\land m=4 \\ |
| A(6,4)-i B(6,4) & k=6\land m=-4 \\ |
| A(6,0) & k=6\land m=0 \\ |
| A(6,4)+i B(6,4) & k=6\land m=4 |
| \end{cases}$$ |
| |
| ### |
| |
| ==== Input format suitable for Mathematica (Quanty.nb) ==== |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[1, 0], k == 1 && m == 0}, {A[2, 0], k == 2 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 0], k == 4 && m == 0}, {A[4, 4] + I*B[4, 4], k == 4 && m == 4}, {A[5, 4] - I*B[5, 4], k == 5 && m == -4}, {A[5, 0], k == 5 && m == 0}, {A[5, 4] + I*B[5, 4], k == 5 && m == 4}, {A[6, 4] - I*B[6, 4], k == 6 && m == -4}, {A[6, 0], k == 6 && m == 0}, {A[6, 4] + I*B[6, 4], k == 6 && m == 4}}, 0] |
</code> | </code> |
| |
==== Result ==== | ### |
<WRAP center box 100%> | |
text produced as output | |
</WRAP> | |
| |
===== Table of contents ===== | ==== Input format suitable for Quanty ==== |
{{indexmenu>.#1}} | |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{0, 0, A(0,0)} , |
| {1, 0, A(1,0)} , |
| {2, 0, A(2,0)} , |
| {3, 0, A(3,0)} , |
| {4, 0, A(4,0)} , |
| {4,-4, A(4,4) + (-I)*(B(4,4))} , |
| {4, 4, A(4,4) + (I)*(B(4,4))} , |
| {5, 0, A(5,0)} , |
| {5,-4, A(5,4) + (-I)*(B(5,4))} , |
| {5, 4, A(5,4) + (I)*(B(5,4))} , |
| {6, 0, A(6,0)} , |
| {6,-4, A(6,4) + (-I)*(B(6,4))} , |
| {6, 4, A(6,4) + (I)*(B(6,4))} } |
| |
| </code> |
| |
| ### |
| |
| ==== One particle coupling on a basis of spherical harmonics ==== |
| |
| ### |
| |
| The operator representing the potential in second quantisation is given as: |
| $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ |
| For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. |
| $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ |
| Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$ |
| |
| |
| ### |
| |
| |
| |
| ### |
| |
| |
| we can express the operator as |
| $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ |
| |
| |
| ### |
| |
| |
| |
| ### |
| |
| |
| The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter. |
| |
| ### |
| |
| |
| |
| ### |
| |
| | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 (\text{Apf}(4,4)-i \text{Bpf}(4,4))}{3 \sqrt{3}} $| |
| ^$ {Y_{0}^{(1)}} $|$\color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} }$|$ 0 $|$ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$ -\frac{2 (\text{Apf}(4,4)+i \text{Bpf}(4,4))}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $| |
| ^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{10}{7}} (\text{Add}(4,4)-i \text{Bdd}(4,4)) $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$| |
| ^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) }$| |
| ^$ {Y_{0}^{(2)}} $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{3} \sqrt{\frac{10}{7}} (\text{Add}(4,4)+i \text{Bdd}(4,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }$|$\color{darkred}{ 0 }$| |
| ^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{2 (\text{Apf}(4,4)-i \text{Bpf}(4,4))}{3 \sqrt{3}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)-i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)-i \text{Bff}(6,4)) $|$ 0 $|$ 0 $| |
| ^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)-i \text{Bdf}(5,4)) }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{33} \sqrt{70} (\text{Aff}(4,4)-i \text{Bff}(4,4))+\frac{10}{143} \sqrt{14} (\text{Aff}(6,4)-i \text{Bff}(6,4)) $|$ 0 $| |
| ^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)-i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)-i \text{Bff}(6,4)) $| |
| ^$ {Y_{0}^{(3)}} $|$\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$ \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)+i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)+i \text{Bff}(6,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $| |
| ^$ {Y_{2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{1}{11} \sqrt{10} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}} }$|$ 0 $|$ \frac{1}{33} \sqrt{70} (\text{Aff}(4,4)+i \text{Bff}(4,4))+\frac{10}{143} \sqrt{14} (\text{Aff}(6,4)+i \text{Bff}(6,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $| |
| ^$ {Y_{3}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{2 (\text{Apf}(4,4)+i \text{Bpf}(4,4))}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} (\text{Adf}(5,4)+i \text{Bdf}(5,4)) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} (\text{Aff}(4,4)+i \text{Bff}(4,4))-\frac{5}{143} \sqrt{\frac{70}{3}} (\text{Aff}(6,4)+i \text{Bff}(6,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $| |
| |
| |
| ### |
| |
| ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== |
| |
| ### |
| |
| |
| Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field |
| |
| ### |
| |
| |
| |
| ### |
| |
| | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $| |
| ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| |
| ^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $| |
| ^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $| |
| ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| |
| ^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| |
| |
| |
| ### |
| |
| ==== One particle coupling on a basis of symmetry adapted functions ==== |
| |
| ### |
| |
| After rotation we find |
| |
| ### |
| |
| |
| |
| ### |
| |
| | $ $ ^ $ \text{s} $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ |
| ^$ \text{s} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ p_y $|$\color{darkred}{ 0 }$|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} $| |
| ^$ p_z $|$\color{darkred}{ \frac{\text{Asp}(1,0)}{\sqrt{3}} }$|$ 0 $|$ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ p_x $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$ -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ \frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} $| |
| ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$| |
| ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) }$| |
| ^$ d_{3z^2-r^2} $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 \text{Apd}(1,0)}{\sqrt{15}}+\frac{3}{7} \sqrt{\frac{3}{5}} \text{Apd}(3,0) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| |
| ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Apd}(1,0)}{\sqrt{5}}-\frac{3 \text{Apd}(3,0)}{7 \sqrt{5}} }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) }$| |
| ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdd}(4,4) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0)+\frac{1}{3} \sqrt{\frac{10}{7}} \text{Add}(4,4) $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}+\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$| |
| ^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ -\frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} $|$ 0 $|$ -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4) $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) $|$ 0 $|$ 0 $| |
| ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}-\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)-\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)-\frac{10}{143} \sqrt{14} \text{Aff}(6,4) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) $|$ 0 $| |
| ^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4) $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) $| |
| ^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ \frac{\text{Asf}(3,0)}{\sqrt{7}} }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3 \text{Adf}(1,0)}{\sqrt{35}}+\frac{4 \text{Adf}(3,0)}{3 \sqrt{35}}+\frac{10}{33} \sqrt{\frac{5}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 2 \sqrt{\frac{2}{35}} \text{Adf}(1,0)+\frac{1}{3} \sqrt{\frac{2}{35}} \text{Adf}(3,0)-\frac{5}{33} \sqrt{\frac{10}{7}} \text{Adf}(5,0) }$|$\color{darkred}{ 0 }$|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ \frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4)-\frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4) $| |
| ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ -\frac{1}{11} \sqrt{10} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Adf}(1,0)}{\sqrt{7}}-\frac{2 \text{Adf}(3,0)}{3 \sqrt{7}}+\frac{5 \text{Adf}(5,0)}{33 \sqrt{7}}+\frac{1}{11} \sqrt{10} \text{Adf}(5,4) }$|$ 0 $|$ -\frac{1}{33} \sqrt{70} \text{Bff}(4,4)-\frac{10}{143} \sqrt{14} \text{Bff}(6,4) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{1}{33} \sqrt{70} \text{Aff}(4,4)+\frac{10}{143} \text{Aff}(6,0)+\frac{10}{143} \sqrt{14} \text{Aff}(6,4) $|$ 0 $| |
| ^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ 0 }$|$ -\frac{2 \text{Bpf}(4,4)}{3 \sqrt{3}} $|$ 0 $|$ \frac{2 \text{Apf}(4,4)}{3 \sqrt{3}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2}{11} \sqrt{\frac{5}{3}} \text{Bdf}(5,4) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{11} \sqrt{\frac{5}{3}} \text{Adf}(5,4) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{14}{3}} \text{Bff}(4,4)-\frac{5}{143} \sqrt{\frac{70}{3}} \text{Bff}(6,4) $|$ 0 $|$ \frac{5}{143} \sqrt{\frac{70}{3}} \text{Aff}(6,4)-\frac{1}{11} \sqrt{\frac{14}{3}} \text{Aff}(4,4) $|$ 0 $|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $| |
| |
| |
| ### |
| |
| ===== Coupling for a single shell ===== |
| |
| |
| |
| ### |
| |
| Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$. |
| |
| ### |
| |
| |
| |
| ### |
| |
| Click on one of the subsections to expand it or <hiddenSwitch expand all> |
| |
| ### |
| |
| ==== Potential for s orbitals ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| \text{Ea} & k=0\land m=0 \\ |
| 0 & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{0, 0, Ea} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{0}^{(0)}} $ ^ |
| ^$ {Y_{0}^{(0)}} $|$ \text{Ea} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ \text{s} $ ^ |
| ^$ \text{s} $|$ \text{Ea} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Rotation matrix used** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{0}^{(0)}} $ ^ |
| ^$ \text{s} $|$ 1 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Irriducible representations and their onsite energy** > |
| |
| ### |
| |
| ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_0_1.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for p orbitals ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| \frac{1}{3} (\text{Ea}+2 \text{Ee}) & k=0\land m=0 \\ |
| 0 & k\neq 2\lor m\neq 0 \\ |
| \frac{5 (\text{Ea}-\text{Ee})}{3} & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{(Ea + 2*Ee)/3, k == 0 && m == 0}, {0, k != 2 || m != 0}}, (5*(Ea - Ee))/3] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{0, 0, (1/3)*(Ea + (2)*(Ee))} , |
| {2, 0, (5/3)*(Ea + (-1)*(Ee))} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ |
| ^$ {Y_{-1}^{(1)}} $|$ \text{Ee} $|$ 0 $|$ 0 $| |
| ^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Ea} $|$ 0 $| |
| ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Ee} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ |
| ^$ p_y $|$ \text{Ee} $|$ 0 $|$ 0 $| |
| ^$ p_z $|$ 0 $|$ \text{Ea} $|$ 0 $| |
| ^$ p_x $|$ 0 $|$ 0 $|$ \text{Ee} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Rotation matrix used** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ |
| ^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $| |
| ^$ p_z $|$ 0 $|$ 1 $|$ 0 $| |
| ^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Irriducible representations and their onsite energy** > |
| |
| ### |
| |
| ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_1_1.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} y$$ | ::: | |
| ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_1_2.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} z$$ | ::: | |
| ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_1_3.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} x$$ | ::: | |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for d orbitals ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| \frac{1}{5} (\text{Ea}+\text{Ebx2y2}+\text{Ebxy}+2 \text{Ee}) & k=0\land m=0 \\ |
| 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ |
| \text{Ea}-\text{Ebx2y2}-\text{Ebxy}+\text{Ee} & k=2\land m=0 \\ |
| \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Ebx2y2}-\text{Ebxy}+2 i \text{Mb}) & k=4\land m=-4 \\ |
| \frac{3}{10} (6 \text{Ea}+\text{Ebx2y2}+\text{Ebxy}-8 \text{Ee}) & k=4\land m=0 \\ |
| \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Ebx2y2}-\text{Ebxy}-2 i \text{Mb}) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{(Ea + Ebx2y2 + Ebxy + 2*Ee)/5, k == 0 && m == 0}, {0, (k != 4 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {Ea - Ebx2y2 - Ebxy + Ee, k == 2 && m == 0}, {(3*Sqrt[7/10]*(Ebx2y2 - Ebxy + (2*I)*Mb))/2, k == 4 && m == -4}, {(3*(6*Ea + Ebx2y2 + Ebxy - 8*Ee))/10, k == 4 && m == 0}}, (3*Sqrt[7/10]*(Ebx2y2 - Ebxy - (2*I)*Mb))/2] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{0, 0, (1/5)*(Ea + Ebx2y2 + Ebxy + (2)*(Ee))} , |
| {2, 0, Ea + (-1)*(Ebx2y2) + (-1)*(Ebxy) + Ee} , |
| {4, 0, (3/10)*((6)*(Ea) + Ebx2y2 + Ebxy + (-8)*(Ee))} , |
| {4, 4, (3/2)*((sqrt(7/10))*(Ebx2y2 + (-1)*(Ebxy) + (-2*I)*(Mb)))} , |
| {4,-4, (3/2)*((sqrt(7/10))*(Ebx2y2 + (-1)*(Ebxy) + (2*I)*(Mb)))} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ |
| ^$ {Y_{-2}^{(2)}} $|$ \frac{\text{Ebx2y2}+\text{Ebxy}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{2} (\text{Ebx2y2}-\text{Ebxy}+2 i \text{Mb}) $| |
| ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Ee} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Ea} $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ee} $|$ 0 $| |
| ^$ {Y_{2}^{(2)}} $|$ \frac{1}{2} (\text{Ebx2y2}-\text{Ebxy}-2 i \text{Mb}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ebx2y2}+\text{Ebxy}}{2} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ |
| ^$ d_{\text{xy}} $|$ \text{Ebxy} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Mb} $| |
| ^$ d_{\text{yz}} $|$ 0 $|$ \text{Ee} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ \text{Ea} $|$ 0 $|$ 0 $| |
| ^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ee} $|$ 0 $| |
| ^$ d_{x^2-y^2} $|$ \text{Mb} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ebx2y2} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Rotation matrix used** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ |
| ^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $| |
| ^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $| |
| ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $| |
| ^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $| |
| ^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Irriducible representations and their onsite energy** > |
| |
| ### |
| |
| ^ ^$$\text{Ebxy}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_2_1.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x y$$ | ::: | |
| ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_2_2.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} y z$$ | ::: | |
| ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_2_3.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1)$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right)$$ | ::: | |
| ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_2_4.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x z$$ | ::: | |
| ^ ^$$\text{Ebx2y2}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_2_5.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right)$$ | ::: | |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for f orbitals ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| \frac{1}{7} (\text{Ea}+\text{Ebxyz}+\text{Ebzx2y2}+2 \text{Ee1}+2 \text{Ee3}) & k=0\land m=0 \\ |
| 0 & (k\neq 4\land k\neq 6\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ |
| \frac{5}{14} (2 \text{Ea}+3 \text{Ee1}-5 \text{Ee3}) & k=2\land m=0 \\ |
| \frac{3}{28} \left(-\sqrt{70} \text{Ebxyz}+\sqrt{70} \text{Ebzx2y2}+2 i \sqrt{70} \text{Mb}-4 i \sqrt{42} \text{MeIm}+4 \sqrt{42} \text{MeRe}\right) & k=4\land m=-4 \\ |
| \frac{3}{14} (6 \text{Ea}-7 \text{Ebxyz}-7 \text{Ebzx2y2}+2 \text{Ee1}+6 \text{Ee3}) & k=4\land m=0 \\ |
| \frac{3}{28} \left(-\sqrt{70} \text{Ebxyz}+\sqrt{70} \text{Ebzx2y2}-2 i \sqrt{70} \text{Mb}+4 i \sqrt{42} \text{MeIm}+4 \sqrt{42} \text{MeRe}\right) & k=4\land m=4 \\ |
| -\frac{13 \left(3 \text{Ebxyz}-3 \text{Ebzx2y2}-6 i \text{Mb}-2 i \sqrt{15} \text{MeIm}+2 \sqrt{15} \text{MeRe}\right)}{10 \sqrt{14}} & k=6\land m=-4 \\ |
| \frac{13}{70} (10 \text{Ea}+3 \text{Ebxyz}+3 \text{Ebzx2y2}-15 \text{Ee1}-\text{Ee3}) & k=6\land m=0 \\ |
| -\frac{13 \left(3 \text{Ebxyz}-3 \text{Ebzx2y2}+6 i \text{Mb}+2 i \sqrt{15} \text{MeIm}+2 \sqrt{15} \text{MeRe}\right)}{10 \sqrt{14}} & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{(Ea + Ebxyz + Ebzx2y2 + 2*Ee1 + 2*Ee3)/7, k == 0 && m == 0}, {0, (k != 4 && k != 6 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {(5*(2*Ea + 3*Ee1 - 5*Ee3))/14, k == 2 && m == 0}, {(3*(-(Sqrt[70]*Ebxyz) + Sqrt[70]*Ebzx2y2 + (2*I)*Sqrt[70]*Mb - (4*I)*Sqrt[42]*MeIm + 4*Sqrt[42]*MeRe))/28, k == 4 && m == -4}, {(3*(6*Ea - 7*Ebxyz - 7*Ebzx2y2 + 2*Ee1 + 6*Ee3))/14, k == 4 && m == 0}, {(3*(-(Sqrt[70]*Ebxyz) + Sqrt[70]*Ebzx2y2 - (2*I)*Sqrt[70]*Mb + (4*I)*Sqrt[42]*MeIm + 4*Sqrt[42]*MeRe))/28, k == 4 && m == 4}, {(-13*(3*Ebxyz - 3*Ebzx2y2 - (6*I)*Mb - (2*I)*Sqrt[15]*MeIm + 2*Sqrt[15]*MeRe))/(10*Sqrt[14]), k == 6 && m == -4}, {(13*(10*Ea + 3*Ebxyz + 3*Ebzx2y2 - 15*Ee1 - Ee3))/70, k == 6 && m == 0}}, (-13*(3*Ebxyz - 3*Ebzx2y2 + (6*I)*Mb + (2*I)*Sqrt[15]*MeIm + 2*Sqrt[15]*MeRe))/(10*Sqrt[14])] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{0, 0, (1/7)*(Ea + Ebxyz + Ebzx2y2 + (2)*(Ee1) + (2)*(Ee3))} , |
| {2, 0, (5/14)*((2)*(Ea) + (3)*(Ee1) + (-5)*(Ee3))} , |
| {4, 0, (3/14)*((6)*(Ea) + (-7)*(Ebxyz) + (-7)*(Ebzx2y2) + (2)*(Ee1) + (6)*(Ee3))} , |
| {4, 4, (3/28)*((-1)*((sqrt(70))*(Ebxyz)) + (sqrt(70))*(Ebzx2y2) + (-2*I)*((sqrt(70))*(Mb)) + (4*I)*((sqrt(42))*(MeIm)) + (4)*((sqrt(42))*(MeRe)))} , |
| {4,-4, (3/28)*((-1)*((sqrt(70))*(Ebxyz)) + (sqrt(70))*(Ebzx2y2) + (2*I)*((sqrt(70))*(Mb)) + (-4*I)*((sqrt(42))*(MeIm)) + (4)*((sqrt(42))*(MeRe)))} , |
| {6, 0, (13/70)*((10)*(Ea) + (3)*(Ebxyz) + (3)*(Ebzx2y2) + (-15)*(Ee1) + (-1)*(Ee3))} , |
| {6,-4, (-13/10)*((1/(sqrt(14)))*((3)*(Ebxyz) + (-3)*(Ebzx2y2) + (-6*I)*(Mb) + (-2*I)*((sqrt(15))*(MeIm)) + (2)*((sqrt(15))*(MeRe))))} , |
| {6, 4, (-13/10)*((1/(sqrt(14)))*((3)*(Ebxyz) + (-3)*(Ebzx2y2) + (6*I)*(Mb) + (2*I)*((sqrt(15))*(MeIm)) + (2)*((sqrt(15))*(MeRe))))} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ {Y_{-3}^{(3)}} $|$ \text{Ee3} $|$ 0 $|$ 0 $|$ 0 $|$ \text{MeRe}-i \text{MeIm} $|$ 0 $|$ 0 $| |
| ^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \frac{\text{Ebxyz}+\text{Ebzx2y2}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{2} (-\text{Ebxyz}+\text{Ebzx2y2}+2 i \text{Mb}) $|$ 0 $| |
| ^$ {Y_{-1}^{(3)}} $|$ 0 $|$ 0 $|$ \text{Ee1} $|$ 0 $|$ 0 $|$ 0 $|$ \text{MeRe}-i \text{MeIm} $| |
| ^$ {Y_{0}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(3)}} $|$ \text{MeRe}+i \text{MeIm} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ee1} $|$ 0 $|$ 0 $| |
| ^$ {Y_{2}^{(3)}} $|$ 0 $|$ \frac{1}{2} (-\text{Ebxyz}+\text{Ebzx2y2}-2 i \text{Mb}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ebxyz}+\text{Ebzx2y2}}{2} $|$ 0 $| |
| ^$ {Y_{3}^{(3)}} $|$ 0 $|$ 0 $|$ \text{MeRe}+i \text{MeIm} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ee3} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ |
| ^$ f_{y\left(3x^2-y^2\right)} $|$ \text{Ee3} $|$ 0 $|$ \text{MeRe} $|$ 0 $|$ \text{MeIm} $|$ 0 $|$ 0 $| |
| ^$ f_{\text{xyz}} $|$ 0 $|$ \text{Ebxyz} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Mb} $|$ 0 $| |
| ^$ f_{y\left(5z^2-r^2\right)} $|$ \text{MeRe} $|$ 0 $|$ \text{Ee1} $|$ 0 $|$ 0 $|$ 0 $|$ \text{MeIm} $| |
| ^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ f_{x\left(5z^2-r^2\right)} $|$ \text{MeIm} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ee1} $|$ 0 $|$ -\text{MeRe} $| |
| ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \text{Mb} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ebzx2y2} $|$ 0 $| |
| ^$ f_{x\left(x^2-3y^2\right)} $|$ 0 $|$ 0 $|$ \text{MeIm} $|$ 0 $|$ -\text{MeRe} $|$ 0 $|$ \text{Ee3} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Rotation matrix used** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ f_{y\left(3x^2-y^2\right)} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $| |
| ^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| |
| ^$ f_{y\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $| |
| ^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ f_{x\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $| |
| ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| |
| ^$ f_{x\left(x^2-3y^2\right)} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **Irriducible representations and their onsite energy** > |
| |
| ### |
| |
| ^ ^$$\text{Ee3}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_1.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right)$$ | ::: | |
| ^ ^$$\text{Ebxyz}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_2.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z$$ | ::: | |
| ^ ^$$\text{Ee1}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_3.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right)$$ | ::: | |
| ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_4.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)$$ | ::: | |
| ^ ^$$\text{Ee1}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_5.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right)$$ | ::: | |
| ^ ^$$\text{Ebzx2y2}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_6.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)$$ | ::: | |
| ^ ^$$\text{Ee3}$$ | {{:physics_chemistry:pointgroup:c4_z_orb_3_7.png?150}} | |
| |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi )$$ | ::: | |
| |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right)$$ | ::: | |
| |
| |
| ### |
| |
| </hidden> |
| ===== Coupling between two shells ===== |
| |
| |
| |
| ### |
| |
| Click on one of the subsections to expand it or <hiddenSwitch expand all> |
| |
| ### |
| |
| ==== Potential for s-p orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & k\neq 1\lor m\neq 0 \\ |
| A(1,0) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, k != 1 || m != 0}}, A[1, 0]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{1, 0, A(1,0)} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ |
| ^$ {Y_{0}^{(0)}} $|$ 0 $|$ \frac{A(1,0)}{\sqrt{3}} $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ |
| ^$ \text{s} $|$ 0 $|$ \frac{A(1,0)}{\sqrt{3}} $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for s-d orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & k\neq 2\lor m\neq 0 \\ |
| A(2,0) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{2, 0, A(2,0)} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ |
| ^$ {Y_{0}^{(0)}} $|$ 0 $|$ 0 $|$ \frac{A(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ |
| ^$ \text{s} $|$ 0 $|$ 0 $|$ \frac{A(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for s-f orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & k\neq 3\lor m\neq 0 \\ |
| A(3,0) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, k != 3 || m != 0}}, A[3, 0]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{3, 0, A(3,0)} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ {Y_{0}^{(0)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{A(3,0)}{\sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ |
| ^$ \text{s} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{A(3,0)}{\sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for p-d orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & (k\neq 1\land k\neq 3)\lor m\neq 0 \\ |
| A(1,0) & k=1\land m=0 \\ |
| A(3,0) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, (k != 1 && k != 3) || m != 0}, {A[1, 0], k == 1 && m == 0}}, A[3, 0]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{1, 0, A(1,0)} , |
| {3, 0, A(3,0)} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ |
| ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ |
| ^$ p_y $|$ 0 $|$ \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ p_z $|$ 0 $|$ 0 $|$ \frac{14 A(1,0)+9 A(3,0)}{7 \sqrt{15}} $|$ 0 $|$ 0 $| |
| ^$ p_x $|$ 0 $|$ 0 $|$ 0 $|$ \frac{7 A(1,0)-3 A(3,0)}{7 \sqrt{5}} $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for p-f orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & (k\neq 4\land (k\neq 2\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ |
| A(2,0) & k=2\land m=0 \\ |
| A(4,4)-i B(4,4) & k=4\land m=-4 \\ |
| A(4,0) & k=4\land m=0 \\ |
| A(4,4)+i B(4,4) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, (k != 4 && (k != 2 || m != 0)) || (m != -4 && m != 0 && m != 4)}, {A[2, 0], k == 2 && m == 0}, {A[4, 4] - I*B[4, 4], k == 4 && m == -4}, {A[4, 0], k == 4 && m == 0}}, A[4, 4] + I*B[4, 4]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{2, 0, A(2,0)} , |
| {4, 0, A(4,0)} , |
| {4,-4, A(4,4) + (-I)*(B(4,4))} , |
| {4, 4, A(4,4) + (I)*(B(4,4))} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 (A(4,4)-i B(4,4))}{3 \sqrt{3}} $| |
| ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(1)}} $|$ -\frac{2 (A(4,4)+i B(4,4))}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ |
| ^$ p_y $|$ -\frac{2 A(4,4)}{3 \sqrt{3}} $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 B(4,4)}{3 \sqrt{3}} $| |
| ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ p_x $|$ -\frac{2 B(4,4)}{3 \sqrt{3}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ \frac{2 A(4,4)}{3 \sqrt{3}} $| |
| |
| |
| ### |
| |
| </hidden> |
| ==== Potential for d-f orbital mixing ==== |
| |
| <hidden **Potential parameterized with onsite energies of irriducible representations** > |
| |
| ### |
| |
| $$A_{k,m} = \begin{cases} |
| 0 & (k\neq 5\land ((k\neq 1\land k\neq 3)\lor m\neq 0))\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ |
| A(1,0) & k=1\land m=0 \\ |
| A(3,0) & k=3\land m=0 \\ |
| A(5,4)-i B(5,4) & k=5\land m=-4 \\ |
| A(5,0) & k=5\land m=0 \\ |
| A(5,4)+i B(5,4) & \text{True} |
| \end{cases}$$ |
| |
| ### |
| |
| </hidden> |
| <hidden **Input format suitable for Mathematica (Quanty.nb)** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty.nb> |
| |
| Akm[k_,m_]:=Piecewise[{{0, (k != 5 && ((k != 1 && k != 3) || m != 0)) || (m != -4 && m != 0 && m != 4)}, {A[1, 0], k == 1 && m == 0}, {A[3, 0], k == 3 && m == 0}, {A[5, 4] - I*B[5, 4], k == 5 && m == -4}, {A[5, 0], k == 5 && m == 0}}, A[5, 4] + I*B[5, 4]] |
| |
| </code> |
| |
| ### |
| |
| </hidden><hidden **Input format suitable for Quanty** > |
| |
| ### |
| |
| <code Quanty Akm_C4_Z.Quanty> |
| |
| Akm = {{1, 0, A(1,0)} , |
| {3, 0, A(3,0)} , |
| {5, 0, A(5,0)} , |
| {5,-4, A(5,4) + (-I)*(B(5,4))} , |
| {5, 4, A(5,4) + (I)*(B(5,4))} } |
| |
| </code> |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of spherical Harmonics** > |
| |
| ### |
| |
| | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ |
| ^$ {Y_{-2}^{(2)}} $|$ 0 $|$ \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{10} (A(5,4)-i B(5,4)) $|$ 0 $| |
| ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ 0 $|$ \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)-i B(5,4)) $| |
| ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ {Y_{1}^{(2)}} $|$ -\frac{2}{11} \sqrt{\frac{5}{3}} (A(5,4)+i B(5,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) $|$ 0 $|$ 0 $| |
| ^$ {Y_{2}^{(2)}} $|$ 0 $|$ \frac{1}{11} \sqrt{10} (A(5,4)+i B(5,4)) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{33 A(1,0)-22 A(3,0)+5 A(5,0)}{33 \sqrt{7}} $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| <hidden **The Hamiltonian on a basis of symmetric functions** > |
| |
| ### |
| |
| | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ |
| ^$ d_{\text{xy}} $|$ 0 $|$ \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)-21 \sqrt{10} A(5,4)\right) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{11} \sqrt{10} B(5,4) $|$ 0 $| |
| ^$ d_{\text{yz}} $|$ -\frac{2}{11} \sqrt{\frac{5}{3}} A(5,4) $|$ 0 $|$ \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2}{11} \sqrt{\frac{5}{3}} B(5,4) $| |
| ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{99 A(1,0)+44 A(3,0)+50 A(5,0)}{33 \sqrt{35}} $|$ 0 $|$ 0 $|$ 0 $| |
| ^$ d_{\text{xz}} $|$ -\frac{2}{11} \sqrt{\frac{5}{3}} B(5,4) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{33} \sqrt{\frac{2}{35}} (66 A(1,0)+11 A(3,0)-25 A(5,0)) $|$ 0 $|$ \frac{2}{11} \sqrt{\frac{5}{3}} A(5,4) $| |
| ^$ d_{x^2-y^2} $|$ 0 $|$ -\frac{1}{11} \sqrt{10} B(5,4) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{231} \left(33 \sqrt{7} A(1,0)-22 \sqrt{7} A(3,0)+5 \sqrt{7} A(5,0)+21 \sqrt{10} A(5,4)\right) $|$ 0 $| |
| |
| |
| ### |
| |
| </hidden> |
| |
| ===== Table of several point groups ===== |
| |
| ### |
| |
| [[physics_chemistry:point_groups|Return to Main page on Point Groups]] |
| |
| ### |
| |
| ### |
| |
| ^Nonaxial groups | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | | |
| ^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub> | |
| ^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub> | |
| ^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub> | |
| ^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | | |
| ^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub> | |
| ^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub> | |
| ^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> | | |
| ^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub> | |
| ^Linear groups | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|$\infty$v]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|$\infty$h]]</sub> | | | | | | |
| |
| ### |