Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
physics_chemistry:coulomb_repulsion_jh_and_slater_integrals [2016/10/07 08:34] – created Maurits W. Haverkort | physics_chemistry:coulomb_repulsion_jh_and_slater_integrals [2018/05/03 22:02] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ====== Coulomb repulsion $J_H$ and Slater integrals ====== | ||
+ | The Coulomb interaction between two electrons depends on the orbital they are in. The closer the charge density of the two orbitals involved is to each other the larger the Coulomb interaction (given by $\frac{e^2}{|r_1-r_2|}$) between them. For example, for two electrons in the $d$-shell the interaction between an electron in the $d_{x^2-y^2}$ orbital and an electron in the $d_{xy}$ orbital is larger then between an electron in the $d_{z^2}$ orbital and an electron in the $d_{xy}$ orbital. | ||
+ | |||
+ | |||
+ | ===== Expansion on spherical Harmonics and Slater integrals ===== | ||
+ | |||
+ | ### | ||
+ | The Coulomb interaction is given as: | ||
+ | \begin{equation} | ||
+ | H = \sum_{i\neq j} \frac{1}{2} \frac{e^2}{|r_i-r_j|}, | ||
+ | \end{equation} | ||
+ | whereby the sum runs over all electrons and the factor $1/2$ takes care of the double counting as each pair of electrons only repels once. In second quantization this Hamiltonian can be written as: | ||
+ | \begin{equation} | ||
+ | H = \sum_{\tau_1\tau_2\tau_3\tau_4} U_{\tau_1\tau_2\tau_3\tau_4} a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \end{equation} | ||
+ | whereby $\tau$ labels the spin and orbital degrees of freedom. | ||
+ | |||
+ | {{: | ||
+ | |||
+ | Calculating the Coulomb interaction is more difficult as one might expect. The interaction strength diverges when $r_1 = r_2$ and one needs to calculate the principle integral in three dimensions. A good way to evaluate this integral is to expand $1/ | ||
+ | |||
+ | The expansion of $e^2/ | ||
+ | \begin{equation} | ||
+ | \sum_{i\neq j} \frac{1}{2} \frac{e^2}{|r_i-r_j|} = \sum_{i\neq j} \frac{1}{2}\sum_{k=0}^{\infty} \sum_{m=-k}^{m=k} \frac{4 \pi e^2}{2k+1} \frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | |||
+ | Expanding our basis states in spherical harmonics times radial wave functions the quantum number $\tau_i$ labels the set of quantum numbers $n_i, | ||
+ | \begin{eqnarray} | ||
+ | && | ||
+ | \nonumber &&= \sum_{\tau_1, | ||
+ | \end{eqnarray} | ||
+ | we can rewrite: | ||
+ | \begin{equation} | ||
+ | \sum_{i\neq j} \frac{1}{2}\sum_{k=0}^{\infty} \sum_{m=-k}^{m=k} \frac{4 \pi}{2k+1} Y_m^{(k)}(\theta_i, | ||
+ | \end{equation} | ||
+ | as: | ||
+ | \begin{eqnarray} | ||
+ | && \frac{1}{2}\sum_{k=0}^{k=\infty}\sum_{\tau_1, | ||
+ | \nonumber && \left\langle Y_{m_1}^{(l_1)} \left | C_{m_1-m_3}^{(k)} \right | Y_{m_3}^{(l_3)} \right\rangle \left\langle Y_{m_4}^{(l_4)} \left | C_{m_4-m_2}^{(k)} \right | Y_{m_2}^{(l_2)} \right\rangle a^{\dagger}_{\tau_1}a^{\phantom{\dagger}}_{\tau_3} a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \end{eqnarray} | ||
+ | which after reordering to normal order becomes: | ||
+ | \begin{eqnarray} | ||
+ | && -\frac{1}{2}\sum_{k=0}^{k=\infty}\sum_{\tau_1, | ||
+ | \nonumber && \left\langle Y_{m_1}^{(l_1)} \left | C_{m_1-m_3}^{(k)} \right | Y_{m_3}^{(l_3)} \right\rangle \left\langle Y_{m_4}^{(l_4)} \left | C_{m_4-m_2}^{(k)} \right | Y_{m_2}^{(l_2)} \right\rangle a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3} a^{\phantom{\dagger}}_{\tau_4}. | ||
+ | \end{eqnarray} | ||
+ | |||
+ | The radial part of the operator ($\frac{\mathrm{Min}[r_i, | ||
+ | \begin{equation} | ||
+ | R^{(k)}[\tau_1\tau_2\tau_3\tau_4]=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | |||
+ | Which gives the final result: | ||
+ | \begin{eqnarray} | ||
+ | H &=& \sum_{\tau_1\tau_2\tau_3\tau_4} U_{\tau_1\tau_2\tau_3\tau_4} a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \nonumber U_{\tau_1\tau_2\tau_3\tau_4} &=& -\frac{1}{2}\delta_{\sigma_1, | ||
+ | \nonumber && | ||
+ | \nonumber c^{(k)}[l_1, | ||
+ | \end{eqnarray} | ||
+ | |||
+ | {{: | ||
+ | |||
+ | Using conservation of angular momentum we can see that $|l_1-l_3| \leq k \leq |l_1+l_3|$ and $|l_2-l_4| \leq k \leq |l_2+l_4|$. This can be used to restrict the number of radial integrals one needs to compute. | ||
+ | ### | ||
+ | |||
+ | |||
+ | ===== Table of contents ===== | ||
+ | {{indexmenu> |