Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
documentation:tutorials:small_programs_a_quick_start:xas [2017/01/10 17:55] – Correct page formatting for larger screens Marius Retegandocumentation:tutorials:small_programs_a_quick_start:xas [2017/01/15 15:48] (current) Marius Retegan
Line 43: Line 43:
  
 ### ###
-In principle one can calculate the spectra for any magnetic field direction, but also for any polarization direction. The Poyinting vector must not be in the $z$ direction and there are thus infinite possibilities to define left circular polarized light. In optics this is solved by calculating the optical conductivity tensor. This is a three by three matrix that describes the optical properties of the material for any posible polarization. If $\sigma(\omega)$ is the energy dependent conductivity tensor (three by three matrix) and $\varepsilon$ the polarization (a vector of length three) then the absorption is give as: $I_{XAS} = -\mathrm{Im}[\varepsilon^* \cdot \sigma(\omega) \cdot \varepsilon$. The conductivity tensor for Ni$^{2+}$ with a field in the $(102)$ direction is shown in the figure above. +In principle one can calculate the spectra for any magnetic field direction, but also for any polarization direction. The Poyinting vector must not be in the $z$ direction and there are thus infinite possibilities to define left circular polarized light. In optics this is solved by calculating the optical conductivity tensor. This is a three by three matrix that describes the optical properties of the material for any posible polarization. If $\sigma(\omega)$ is the energy dependent conductivity tensor (three by three matrix) and $\varepsilon$ the polarization (a vector of length three) then the absorption is give as: $I_{XAS} = -\mathrm{Im}[\varepsilon^* \cdot \sigma(\omega) \cdot \varepsilon$]. The conductivity tensor for Ni$^{2+}$ with a field in the $(102)$ direction is shown in the figure above. 
 ### ###
  
Print/export