Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
documentation:tutorials:nio_ligand_field:nixs_l23 [2016/10/09 15:51] – created Maurits W. Haverkortdocumentation:tutorials:nio_ligand_field:nixs_l23 [2018/03/20 11:08] (current) Maurits W. Haverkort
Line 1: Line 1:
 +{{indexmenu_n>11}}
 +====== nIXS $L_{2,3}$ ======
  
 +###
 +Besides low energy transitions nIXS can be used as a core level spectroscopy technique. One then measures resonances with non-resonant inelastic x-ray scattering :-).
 +###
 +
 +###
 +This tutorial uses Radial wave functions in order to calculate the length of q dependence. You can download them in a zip file here {{ :documentation:tutorials:nio_crystal_field:nio_data.zip |}}. Please unpack this file and make sure to have the folders NiO_Experiment and NiO_Radial in the same folder as you do the calculations. 
 +###
 +
 +###
 +The input script:
 +<code Quanty NIXS_L23.Quanty>
 +-- using inelastic x-ray scattering one can not only measure low energy excitations,
 +-- but equally well core to core transitions. This allows one to probe for example
 +-- 3p to 3d transitions using octupole operators. 
 +
 +-- We use the definitions of all operators and basis orbitals as defined in the file
 +-- include and can afterwards directly continue by creating the Hamiltonian
 +-- and calculating the spectra
 +
 +dofile("Include.Quanty")
 +
 +-- The parameters and scheme needed is the same as the one used for XAS
 +
 +-- We follow the energy definitions as introduced in the group of G.A. Sawatzky (Groningen)
 +-- J. Zaanen, G.A. Sawatzky, and J.W. Allen PRL 55, 418 (1985)
 +-- for parameters of specific materials see
 +-- A.E. Bockquet et al. PRB 55, 1161 (1996)
 +-- After some initial discussion the energies U and Delta refer to the center of a configuration
 +-- The L^10 d^n   configuration has an energy 0
 +-- The L^9  d^n+1 configuration has an energy Delta
 +-- The L^8  d^n+2 configuration has an energy 2*Delta+Udd
 +--
 +-- If we relate this to the onsite energy of the L and d orbitals we find
 +-- 10 eL +  n    ed + n(n-1)     U/2 == 0
 +--  9 eL + (n+1) ed + (n+1)n     U/2 == Delta
 +--  8 eL + (n+2) ed + (n+1)(n+2) U/2 == 2*Delta+U
 +-- 3 equations with 2 unknowns, but with interdependence yield:
 +-- ed = (10*Delta-nd*(19+nd)*U/2)/(10+nd)
 +-- eL = nd*((1+nd)*Udd/2-Delta)/(10+nd)
 +--
 +-- For the final state we/they defined
 +-- The 2p^5 L^10 d^n+1 configuration has an energy 0
 +-- The 2p^5 L^9  d^n+2 configuration has an energy Delta + Udd - Upd
 +-- The 2p^5 L^8  d^n+3 configuration has an energy 2*Delta + 3*Udd - 2*Upd
 +--
 +-- If we relate this to the onsite energy of the p and d orbitals we find
 +-- 6 ep + 10 eL +  n    ed + n(n-1)     Udd/2 + 6 n     Upd == 0
 +-- 6 ep +  9 eL + (n+1) ed + (n+1)n     Udd/2 + 6 (n+1) Upd == Delta
 +-- 6 ep +  8 eL + (n+2) ed + (n+1)(n+2) Udd/2 + 6 (n+2) Upd == 2*Delta+Udd
 +-- 5 ep + 10 eL + (n+1) ed + (n+1)(n)   Udd/2 + 5 (n+1) Upd == 0
 +-- 5 ep +  9 eL + (n+2) ed + (n+2)(n+1) Udd/2 + 5 (n+2) Upd == Delta+Udd-Upd
 +-- 5 ep +  8 eL + (n+3) ed + (n+3)(n+2) Udd/2 + 5 (n+3) Upd == 2*Delta+3*Udd-2*Upd
 +-- 6 equations with 3 unknowns, but with interdependence yield:
 +-- epfinal = (10*Delta + (1+nd)*(nd*Udd/2-(10+nd)*Upd) / (16+nd)
 +-- edfinal = (10*Delta - nd*(31+nd)*Udd/2-90*Upd) / (16+nd)
 +-- eLfinal = ((1+nd)*(nd*Udd/2+6*Upd)-(6+nd)*Delta) / (16+nd)
 +--
 +-- 
 +-- 
 +-- note that ed-ep = Delta - nd * U and not Delta
 +-- note furthermore that ep and ed here are defined for the onsite energy if the system had
 +-- locally nd electrons in the d-shell. In DFT or Hartree Fock the d occupation is in the end not
 +-- nd and thus the onsite energy of the Kohn-Sham orbitals is not equal to ep and ed in model
 +-- calculations.
 +--
 +-- note furthermore that ep and eL actually should be different for most systems. We happily ignore this fact
 +-- 
 +-- We normally take U and Delta as experimentally determined parameters
 +
 +-- number of electrons (formal valence)
 +nd = 8
 +-- parameters from experiment (core level PES)
 +Udd      7.3
 +Upd      8.5
 +Delta    4.7
 +-- parameters obtained from DFT (PRB 85, 165113 (2012))
 +F2dd    = 11.14 
 +F4dd    =  6.87
 +F2pd    =  6.67
 +G1pd    =  4.92
 +G3pd    =  2.80
 +tenDq    0.56
 +tenDqL  =  1.44
 +Veg      2.06
 +Vt2g    =  1.21
 +zeta_3d =  0.081
 +zeta_2p = 11.51
 +Bz      =  0.000001
 +H112    =  0
 +
 +ed      = (10*Delta-nd*(19+nd)*Udd/2)/(10+nd)
 +eL      = nd*((1+nd)*Udd/2-Delta)/(10+nd)
 +
 +epfinal = (10*Delta + (1+nd)*(nd*Udd/2-(10+nd)*Upd)) / (16+nd)
 +edfinal = (10*Delta - nd*(31+nd)*Udd/2-90*Upd) / (16+nd)
 +eLfinal = ((1+nd)*(nd*Udd/2+6*Upd) - (6+nd)*Delta) / (16+nd)
 +
 +F0dd    = Udd + (F2dd+F4dd) * 2/63
 +F0pd    = Upd + (1/15)*G1pd + (3/70)*G3pd
 +
 +Hamiltonian =  F0dd*OppF0_3d + F2dd*OppF2_3d + F4dd*OppF4_3d + zeta_3d*Oppldots_3d + Bz*(2*OppSz_3d + OppLz_3d) + H112 * (OppSx_3d+OppSy_3d+2*OppSz_3d)/sqrt(6) + tenDq*OpptenDq_3d + tenDqL*OpptenDq_Ld + Veg * OppVeg + Vt2g * OppVt2g + ed * OppN_3d + eL * OppN_Ld
 +            
 +XASHamiltonian =  F0dd*OppF0_3d + F2dd*OppF2_3d + F4dd*OppF4_3d + zeta_3d*Oppldots_3d + Bz*(2*OppSz_3d + OppLz_3d)+ H112 * (OppSx_3d+OppSy_3d+2*OppSz_3d)/sqrt(6) + tenDq*OpptenDq_3d + tenDqL*OpptenDq_Ld + Veg * OppVeg + Vt2g * OppVt2g + edfinal * OppN_3d + eLfinal * OppN_Ld + epfinal * OppN_2p + zeta_2p * Oppcldots + F0pd * OppUpdF0 + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3  
 +               
 +-- we now can create the lowest Npsi eigenstates:
 +Npsi=3
 +-- in order to make sure we have a filling of 8 electrons we need to define some restrictions
 +StartRestrictions = {NF, NB, {"000000 00 1111111111 0000000000",8,8}, {"111111 11 0000000000 1111111111",18,18}}
 +
 +psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi)
 +oppList={Hamiltonian, OppSsqr, OppLsqr, OppJsqr, OppSx_3d, OppLx_3d, OppSy_3d, OppLy_3d, OppSz_3d, OppLz_3d, Oppldots_3d, OppF2_3d, OppF4_3d, OppNeg_3d, OppNt2g_3d, OppNeg_Ld, OppNt2g_Ld, OppN_3d}
 +
 +-- print of some expectation values
 +print("  #    <E>      <S^2>    <L^2>    <J^2>    <S_x^3d> <L_x^3d> <S_y^3d> <L_y^3d> <S_z^3d> <L_z^3d> <l.s>    <F[2]>   <F[4]>   <Neg^3d> <Nt2g^3d><Neg^Ld> <Nt2g^Ld><N^3d>");
 +for i = 1,#psiList do
 +  io.write(string.format("%3i ",i))
 +  for j = 1,#oppList do
 +    expectationvalue = Chop(psiList[i]*oppList[j]*psiList[i])
 +    io.write(string.format("%8.3f ",expectationvalue))
 +  end
 +  io.write("\n")
 +end
 +
 +
 +-- in order to calculate nIXS we need to determine the intensity ratio for the different multipole intensities
 +-- ( see PRL 99, 257401 (2007) for the formalism )
 +-- in short the A^2 interaction is expanded on spherical harmonics and Bessel functions
 +-- The 3d Wannier functions are expanded on spherical harmonics and a radial wave function
 +-- For the radial wave-function we calculate <R(r) | j_k(q r) | R(r)>
 +-- which defines the transition strength for the multipole of order k
 +
 +-- The radial functions here are calculated for a Ni 2+ atom and stored in the folder NiO_Radial
 +-- more sophisticated methods can be used
 +
 +-- read the radial wave functions
 +-- order of functions
 +-- r 1S 2S 2P 3S 3P 3D
 +file = io.open( "NiO_Radial/RnlNi_Atomic_Hartree_Fock", "r")
 +Rnl = {}
 +for line in file:lines() do
 +  RnlLine={}
 +  for i in string.gmatch(line, "%S+") do
 +    table.insert(RnlLine,i)
 +  end
 +  table.insert(Rnl,RnlLine)
 +end
 +
 +-- some constants
 +a0      =  0.52917721092
 +Rydberg = 13.60569253
 +Hartree = 2*Rydberg
 +
 +-- pd transitions from 2p (index 4 in Rnl) to 3d (index 7 in Rnl)
 +-- <R(r) | j_k(q r) | R(r)>
 +function RjRpd (q)
 +  Rj1R = 0
 +  Rj3R = 0
 +  dr = Rnl[3][1]-Rnl[2][1]
 +  r0 = Rnl[2][1]-2*dr
 +  for ir = 2, #Rnl, 1 do
 +    r = r0 + ir * dr
 +    Rj1R = Rj1R + Rnl[ir][4] * math.SphericalBesselJ(1,q*r) * Rnl[ir][7] * dr
 +    Rj3R = Rj3R + Rnl[ir][4] * math.SphericalBesselJ(3,q*r) * Rnl[ir][7] * dr
 +  end
 +  return Rj1R, Rj3R
 +end
 +
 +-- the angular part is given as C(theta_q, phi_q)^* C(theta_r, phi_r)
 +-- which is a potential expanded on spherical harmonics
 +function ExpandOnClm(k,theta,phi,scale)
 +  ret={}
 +  for m=-k, k, 1 do
 +    table.insert(ret,{k,m,scale * math.SphericalHarmonicC(k,m,theta,phi)})
 +  end
 +  return ret
 +end
 +
 +-- define nIXS transition operators
 +function TnIXS_pd(q, theta, phi)
 +  Rj1R, Rj3R = RjRpd(q)
 +  k=1
 +  A1 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj1R)
 +  T1 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A1)
 +  k=3
 +  A3 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj3R)
 +  T3 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A3)
 +  T = T1+T3
 +  T.Chop()
 +  return T
 +end
 +
 +-- q in units per a0 (if you want in units per A take 5*a0 to have a q of 5 per A)
 +q=9.0
 +
 +print("for q=",q," per a0 (",q / a0," per A) The ratio of k=1 and k=3 transition strength is:", RjRpd(q))
 +
 +-- define some transition operators
 +qtheta=0
 +qphi=0
 +Tq001 = TnIXS_pd(q,qtheta,qphi)
 +
 +qtheta=Pi/2
 +qphi=Pi/4
 +Tq110 = TnIXS_pd(q,qtheta,qphi)
 +
 +qtheta=math.acos(math.sqrt(1/3))
 +qphi=Pi/4
 +Tq111 = TnIXS_pd(q,qtheta,qphi)
 +
 +qtheta=math.acos(math.sqrt(9/14))
 +qphi=math.acos(math.sqrt(1/5))
 +Tq123 = TnIXS_pd(q,qtheta,qphi)
 +
 +-- calculate the spectra
 +nIXSSpectra = CreateSpectra(XASHamiltonian, {Tq001, Tq110, Tq111, Tq123}, psiList, {{"Emin",-10}, {"Emax",20}, {"NE",6000}, {"Gamma",1.0}})
 +
 +-- print the spectra to a file
 +nIXSSpectra.Print({{"file","NiOnIXS_L23.dat"}});
 +
 +-- a gnuplot script to make the plots
 +gnuplotInput = [[
 +set autoscale  
 +set xtic auto
 +set ytic auto  
 +set style line  1 lt 1 lw 1 lc rgb "#FF0000"
 +set style line  2 lt 1 lw 1 lc rgb "#0000FF"
 +set style line  3 lt 1 lw 1 lc rgb "#00C000"
 +set style line  4 lt 1 lw 1 lc rgb "#000000"
 +set style line  5 lt 1 lw 3 lc rgb "#808080"
 +
 +set xlabel "E (eV)" font "Times,12"
 +set ylabel "Intensity (arb. units)" font "Times,12"
 +
 +set out 'NiOnIXS_L23.ps'
 +set size 1.0, 0.3
 +set terminal postscript portrait enhanced color  "Times" 8
 +
 +energyshift=857.6
 +
 +plot "NiOnIXS_L23.dat" using ($1+energyshift):(-$9  -$11 -$13 +0.16) title '011' with lines ls  2,\
 +     "NiOnIXS_L23.dat" using ($1+energyshift):(-$15 -$17 -$19 +0.11) title '111' with lines ls  3,\
 +     "NiOnIXS_L23.dat" using ($1+energyshift):(-$21 -$23 -$25 +0.06) title '123' with lines ls  4,\
 +     "NiOnIXS_L23.dat" using ($1+energyshift):(-$3   -$5  -$7 +0.01) title '001' with lines ls  1
 +
 +]]
 +
 +-- write the gnuplot script to a file
 +file = io.open("NiOnIXS_L23.gnuplot", "w")
 +file:write(gnuplotInput)
 +file:close()
 +
 +-- call gnuplot to execute the script
 +os.execute("gnuplot NiOnIXS_L23.gnuplot")
 +-- transform to pdf and eps
 +os.execute("ps2pdf NiOnIXS_L23.ps  ; ps2eps NiOnIXS_L23.ps  ;  mv NiOnIXS_L23.eps temp.eps  ; eps2eps temp.eps NiOnIXS_L23.eps  ; rm temp.eps")
 +</code>
 +###
 +
 +The spectrum produced:
 +| {{:documentation:tutorials:nio_ligand_field:nionixs_l23.png?nolink |}} |
 +^ nIXS for NiO looking at a $2p$ to $3d$ excitation ^
 +
 +###
 +The output is to standard out:
 +<file Quanty_Output>
 +  #    <E>      <S^2>    <L^2>    <J^2>    <S_x^3d> <L_x^3d> <S_y^3d> <L_y^3d> <S_z^3d> <L_z^3d> <l.s>    <F[2]>   <F[4]>   <Neg^3d> <Nt2g^3d><Neg^Ld> <Nt2g^Ld><N^3d>
 +  1   -3.395    1.999   12.000   15.147    0.000    0.000    0.000    0.000   -0.905   -0.280   -0.319   -1.043   -0.925    2.189    5.989    3.823    6.000    8.178 
 +  2   -3.395    1.999   12.000   15.147    0.000    0.000    0.000    0.000   -0.000   -0.000   -0.319   -1.043   -0.925    2.189    5.989    3.823    6.000    8.178 
 +  3   -3.395    1.999   12.000   15.147    0.000    0.000    0.000    0.000    0.905    0.280   -0.319   -1.043   -0.925    2.189    5.989    3.823    6.000    8.178 
 +for q= 9 per a0 ( 17.007535121086 per A) The ratio of k=1 and k=3 transition strength is: 0.081284239649905 0.04426369559805
 +</file>
 +\lstinputlisting[style=output]{../../Example_and_Testing/History/include/Tutorials/40_NiO_Ligand_Field/49_NIXS_L23.out}
 +###
 +
 +
 +===== Table of contents =====
 +{{indexmenu>.#1|msort}}
Print/export