Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
documentation:standard_operators:coulomb_repulsion [2016/10/06 08:39] – created Maurits W. Haverkort | documentation:standard_operators:coulomb_repulsion [2017/05/23 16:43] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | {{indexmenu_n> | ||
+ | ====== Coulomb repulsion operator (U) ====== | ||
+ | ### | ||
+ | The Coulomb interaction is given as: | ||
+ | \begin{equation} | ||
+ | H = \sum_{i\neq j} \frac{1}{2} \frac{e^2}{|r_i-r_j|}, | ||
+ | \end{equation} | ||
+ | whereby the sum runs over all electrons and the factor $1/2$ takes care of the double counting as each pair of electrons only repels once. In second quantization this Hamiltonian can be written as: | ||
+ | \begin{equation} | ||
+ | H = \sum_{\tau_1\tau_2\tau_3\tau_4} U_{\tau_1\tau_2\tau_3\tau_4} a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \end{equation} | ||
+ | whereby $\tau$ labels the spin and orbital degrees of freedom. | ||
+ | |||
+ | {{: | ||
+ | |||
+ | Calculating the Coulomb interaction is more difficult as one might expect. The interaction strength diverges when $r_1 = r_2$ and one needs to calculate the principle integral in three dimensions. A good way to evaluate this integral is to expand $1/ | ||
+ | |||
+ | The expansion of $e^2/ | ||
+ | \begin{equation} | ||
+ | \sum_{i\neq j} \frac{1}{2} \frac{e^2}{|r_i-r_j|} = \sum_{i\neq j} \frac{1}{2}\sum_{k=0}^{\infty} \sum_{m=-k}^{m=k} \frac{4 \pi}{2k+1} \frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | |||
+ | Expanding our basis states in spherical harmonics times radial wave functions the quantum number $\tau_i$ labels the set of quantum numbers $n_i, | ||
+ | \begin{eqnarray} | ||
+ | && | ||
+ | \nonumber &&= \sum_{\tau_1, | ||
+ | \end{eqnarray} | ||
+ | we can rewrite: | ||
+ | \begin{equation} | ||
+ | \sum_{i\neq j} \frac{1}{2}\sum_{k=0}^{\infty} \sum_{m=-k}^{m=k} \frac{4 \pi}{2k+1} Y_m^{(k)}(\theta_i, | ||
+ | \end{equation} | ||
+ | as: | ||
+ | \begin{eqnarray} | ||
+ | && \frac{1}{2}\sum_{k=0}^{k=\infty}\sum_{\tau_1, | ||
+ | \nonumber && \left\langle Y_{m_1}^{(l_1)} \left | C_{m_1-m_3}^{(k)} \right | Y_{m_3}^{(l_3)} \right\rangle \left\langle Y_{m_4}^{(l_4)} \left | C_{m_4-m_2}^{(k)} \right | Y_{m_2}^{(l_2)} \right\rangle a^{\dagger}_{\tau_1}a^{\phantom{\dagger}}_{\tau_3} a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \end{eqnarray} | ||
+ | which after reordering to normal order becomes: | ||
+ | \begin{eqnarray} | ||
+ | && -\frac{1}{2}\sum_{k=0}^{k=\infty}\sum_{\tau_1, | ||
+ | \nonumber && \left\langle Y_{m_1}^{(l_1)} \left | C_{m_1-m_3}^{(k)} \right | Y_{m_3}^{(l_3)} \right\rangle \left\langle Y_{m_4}^{(l_4)} \left | C_{m_4-m_2}^{(k)} \right | Y_{m_2}^{(l_2)} \right\rangle a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3} a^{\phantom{\dagger}}_{\tau_4}. | ||
+ | \end{eqnarray} | ||
+ | |||
+ | The radial part of the operator ($\frac{\mathrm{Min}[r_i, | ||
+ | \begin{equation} | ||
+ | R^{(k)}[\tau_1\tau_2\tau_3\tau_4]=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | |||
+ | Which gives the final result: | ||
+ | \begin{eqnarray} | ||
+ | H &=& \sum_{\tau_1\tau_2\tau_3\tau_4} U_{\tau_1\tau_2\tau_3\tau_4} a^{\dagger}_{\tau_1}a^{\dagger}_{\tau_2}a^{\phantom{\dagger}}_{\tau_3}a^{\phantom{\dagger}}_{\tau_4}, | ||
+ | \nonumber U_{\tau_1\tau_2\tau_3\tau_4} &=& -\frac{1}{2}\delta_{\sigma_1, | ||
+ | \nonumber && | ||
+ | \nonumber c^{(k)}[l_1, | ||
+ | \end{eqnarray} | ||
+ | |||
+ | {{: | ||
+ | |||
+ | Using conservation of angular momentum we can see that $|l_1-l_3| \leq k \leq |l_1+l_3|$ and $|l_2-l_4| \leq k \leq |l_2+l_4|$. This can be used to restrict the number of radial integrals one needs to compute. | ||
+ | ### | ||
+ | |||
+ | ===== Single shell ===== | ||
+ | |||
+ | ### | ||
+ | {{: | ||
+ | \begin{equation} | ||
+ | F^{(k)} = R^{(k)}[\tau_1\tau_2\tau_3\tau_4]. | ||
+ | \end{equation} | ||
+ | In Quanty one can add this Coulomb operator as: | ||
+ | <code Quanty Example.Quanty> | ||
+ | NewOperator(" | ||
+ | </ | ||
+ | whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even. | ||
+ | ### | ||
+ | |||
+ | ### | ||
+ | For a $d$ shell one can define: | ||
+ | <code Quanty Example.Quanty> | ||
+ | OppF0 = NewOperator(" | ||
+ | OppF2 = NewOperator(" | ||
+ | OppF4 = NewOperator(" | ||
+ | </ | ||
+ | to get the Coulomb operator proportional to $F^{(0)}$, $F^{(2)}$ and $F^{(4)}$. | ||
+ | ### | ||
+ | |||
+ | ===== Two shells, shell occupation conserving ===== | ||
+ | |||
+ | |||
+ | ### | ||
+ | {{: | ||
+ | \begin{equation} | ||
+ | F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | with $0 \leq k \leq \mathrm{Min}[2l_1, | ||
+ | |||
+ | The indirect term is given by the exchange integrals: | ||
+ | \begin{equation} | ||
+ | G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i, | ||
+ | \end{equation} | ||
+ | with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2, i.e. $k$ is even if both $l_1$ and $l_2$ are even or odd and $k$ is odd if one of the angular momenta involved is even and the other is odd. | ||
+ | ### | ||
+ | |||
+ | ### | ||
+ | In Quanty one can implement these operators as: | ||
+ | <code Quanty Example.Quanty> | ||
+ | NewOperator(" | ||
+ | </ | ||
+ | For $l_1=1$ and $l_2=2$ one could define: | ||
+ | <code Quanty Example.Quanty> | ||
+ | OppF0pd = NewOperator(" | ||
+ | OppF2pd = NewOperator(" | ||
+ | |||
+ | OppG1pd = NewOperator(" | ||
+ | OppG3pd = NewOperator(" | ||
+ | </ | ||
+ | ### | ||
+ | |||
+ | ===== General case of 4 different shells ===== | ||
+ | |||
+ | ### | ||
+ | {{: | ||
+ | \begin{equation} | ||
+ | R^{(k)}[n_1l_1\: | ||
+ | \end{equation} | ||
+ | with $\mathrm{Max}[|l_1-l_3|, | ||
+ | ### | ||
+ | |||
+ | ### | ||
+ | In Quanty one can implement these operators as: | ||
+ | <code Quanty Example.Quanty> | ||
+ | NewOperator(" | ||
+ | </ | ||
+ | For $l_1=3$, $l_2=0$, $l_3=2$ and $l_4=1$ one has $k=1$ and one could define: | ||
+ | <code Quanty Example.Quanty> | ||
+ | OppR1pd = NewOperator(" | ||
+ | </ | ||
+ | ### | ||
+ | |||
+ | ### | ||
+ | Note that in the general case you need to sum over all possible permutations of $n_1l_1$, $n_2l_2$, $n_3l_3$ and $n_4l_4$. Permuting $n_1l_1$ with $n_2l_2$ and at the same time $n_3l_3$ with $n_4l_4$ will not change the value and form of the operator. If $n_1l_1$ is different from $n_2l_2$ and $n_3l_3$ is different from $n_4l_4$ one can add a factor of two in front of the operator and only add one of the permutations. If one of the $n_1l_1$ is the same as $n_2l_2$ or $n_3l_3$ is the same as $n_4l_4$ a permutation will not lead to a new configuration and the factor of two disappears. If you just sum over all possible $n_il_i$ combinations things go right automatically. | ||
+ | ### | ||
+ | |||
+ | ===== Table of contents ===== | ||
+ | {{indexmenu> |