Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
documentation:language_reference:functions:newtightbinding [2016/10/10 09:41] – external edit 127.0.0.1 | documentation:language_reference:functions:newtightbinding [2024/08/29 18:03] (current) – Micheangelo Tagliavini | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
- | ### | ||
- | alligned paragraph text | ||
- | ### | ||
- | ===== Input ===== | + | // |
- | * bla : Integer | + | * Name: "" |
- | * bla2 : Real | + | * Cell: {a,b,c} with a, b, c as random vectors. |
+ | * Atoms: {} | ||
+ | * Units: {" | ||
+ | * NF: `0` (number of orbitals defined in Atoms) | ||
+ | |||
+ | The //Units// property is a list of three strings with the following contributions: | ||
+ | * Units[1]: Sets the scaling for the reciprocal lattice, e.g., $\vec{r}\cdot\vec{g}=2\pi$ for " | ||
+ | * Units[2]: Defines the unit of measurement as " | ||
+ | * Units[3]: Selects " | ||
+ | |||
+ | Once a Tight Binding object is created, all properties can be assigned except //.NF//, which is determined by the number of orbitals defined in \\.Atoms\\. | ||
+ | |||
+ | ===== Input ===== | ||
===== Output ===== | ===== Output ===== | ||
- | * bla : real | + | * A Tight Binding Object |
===== Example ===== | ===== Example ===== | ||
- | ### | ||
- | description text | ||
- | ### | ||
==== Input ==== | ==== Input ==== | ||
<code Quanty Example.Quanty> | <code Quanty Example.Quanty> | ||
- | -- some example code | + | -- |
+ | ### Input | ||
+ | ```lua | ||
+ | -- Create the tight binding Hamiltonian | ||
+ | HTB = NewTightBinding() | ||
+ | |||
+ | print(" | ||
+ | print(HTB) | ||
+ | |||
+ | print(" | ||
+ | print(" | ||
+ | print(" | ||
+ | print(" | ||
+ | print(" | ||
+ | print(" | ||
+ | |||
+ | t1 = 1 | ||
+ | t2 = 2 | ||
+ | |||
+ | HTB.Name = "My wishes for dinner" | ||
+ | |||
+ | HTB.Units = {" | ||
+ | |||
+ | HTB.Cell = { | ||
+ | {1, 0, 0}, | ||
+ | {0, 1, 0}, | ||
+ | {0, 0, 1} | ||
+ | } | ||
+ | |||
+ | HTB.Atoms = { | ||
+ | {" | ||
+ | {" | ||
+ | } | ||
+ | |||
+ | HTB.Hopping = { | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | } | ||
</ | </ | ||
==== Result ==== | ==== Result ==== | ||
<file Quanty_Output> | <file Quanty_Output> | ||
- | text produced as output | + | Printing the TB Object |
+ | |||
+ | Settings of a tight binding model: | ||
+ | |||
+ | printout of Crystal Structure | ||
+ | Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions | ||
+ | Unit cell parameters: | ||
+ | a: | ||
+ | b: | ||
+ | c: | ||
+ | Reciprocal latice: | ||
+ | a: | ||
+ | b: | ||
+ | c: | ||
+ | Number of atoms 0 | ||
+ | Containing a total number of 0 orbitals | ||
+ | Hopping definitions ( 0 ) | ||
+ | |||
+ | |||
+ | Callable Properties: | ||
+ | Cell: { { 6.0134700169991e-154 , 1.0216608544487e-259 , 2.7856078039899e-91 } , | ||
+ | { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } , | ||
+ | { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } } | ||
+ | Units: { 2Pi , Angstrom , Absolute } | ||
+ | Atoms: | ||
+ | Hopping: | ||
+ | NF: 0 | ||
+ | |||
+ | Settings of a tight binding model: My wishes for dinner | ||
+ | |||
+ | printout of Crystal Structure | ||
+ | Units: 2Pi (g.r=2Pi) Bohr | ||
+ | Unit cell parameters: | ||
+ | a: | ||
+ | b: | ||
+ | c: | ||
+ | Reciprocal latice: | ||
+ | a: | ||
+ | b: | ||
+ | c: | ||
+ | Number of atoms 2 | ||
+ | # 0 | pizza ( 0 ) at position { | ||
+ | | Margherita shell with 1 orbitals { 0 } | ||
+ | # 1 | pasta ( 0 ) at position { | ||
+ | | Pesto shell with 1 orbitals { 0 } | ||
+ | | Carbonara shell with 1 orbitals { 0 } | ||
+ | Containing a total number of 3 orbitals | ||
+ | Hopping definitions ( 4 ) | ||
+ | Hopping from 0 : pizza - Margherita to 1 : pasta - Pesto with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
+ | |||
+ | Hopping from 1 : pasta - Pesto to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
+ | |||
+ | Hopping from 0 : pizza - Margherita to 1 : pasta - Carbonara with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
+ | |||
+ | Hopping from 1 : pasta - Carbonara to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
</ | </ | ||