Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:functions:newtightbinding [2016/10/10 09:41] – external edit 127.0.0.1documentation:language_reference:functions:newtightbinding [2024/08/29 18:03] (current) Micheangelo Tagliavini
Line 1: Line 1:
-====== NewTightbinding ======+====== NewTightBinding ======
  
-### 
-alligned paragraph text 
-### 
  
-===== Input =====+//NewTightBinding()// initiates a Tight Binding object with the following standard properties:
  
-  * bla Integer +  * Name"" (empty string) 
-  * bla2 Real+  * Cell{a,b,c} with a, b, c as random vectors. 
 +  * Atoms: {} 
 +  * Units: {"2Pi", "Angstrom", "Absolute"}  
 +  * NF: `0` (number of orbitals defined in Atoms) 
 + 
 +The //Units// property is a list of three strings with the following contributions: 
 +  * Units[1]: Sets the scaling for the reciprocal lattice, e.g., $\vec{r}\cdot\vec{g}=2\pi$ for "2Pi" or $\vec{r}\cdot\vec{g}=1$ for "NoPi"
 +  * Units[2]: Defines the unit of measurement as "Angstrom", "Bohr", or "nanometer"
 +  * Units[3]: Selects "Absolute" or "Relative" for the definition of atom positions. 
 + 
 +Once a Tight Binding object is created, all properties can be assigned except //.NF//, which is determined by the number of orbitals defined in \\.Atoms\\. 
 + 
 +===== Input =====
  
 ===== Output ===== ===== Output =====
  
-  * bla : real+  *  A Tight Binding Object 
  
 ===== Example ===== ===== Example =====
  
-### 
-description text 
-### 
  
 ==== Input ==== ==== Input ====
 <code Quanty Example.Quanty> <code Quanty Example.Quanty>
--- some example code+-- 
 +### Input 
 +```lua 
 +-- Create the tight binding Hamiltonian 
 +HTB = NewTightBinding() 
 + 
 +print("Printing the TB Object"
 +print(HTB) 
 + 
 +print("Callable Properties:"
 +print("Cell:", HTB.Cell) 
 +print("Units:", HTB.Units) 
 +print("Atoms:", HTB.Atoms) 
 +print("Hopping:", HTB.Hopping) 
 +print("NF:", HTB.NF) 
 + 
 +t1 = 1 
 +t2 = 2 
 + 
 +HTB.Name = "My wishes for dinner" 
 + 
 +HTB.Units = {"2Pi", "Bohr", "Relative"
 + 
 +HTB.Cell = { 
 +    {1, 0, 0}, 
 +    {0, 1, 0}, 
 +    {0, 0, 1} 
 +
 + 
 +HTB.Atoms = { 
 +    {"pizza", {0, 0, 0}, {{"Margherita", {"0"}}}}, 
 +    {"pasta", {0, 1, 0}, {{"Pesto", {"0"}}, {"Carbonara", {"0"}}}} 
 +
 + 
 +HTB.Hopping = { 
 +    {"pizza.Margherita", "pasta.Pesto", {0, 1, 0}, {{t1}}}, 
 +    {"pasta.Pesto", "pizza.Margherita", {0, -1, 0}, {{t1}}}, 
 +    {"pizza.Margherita", "pasta.Carbonara", {0, 1, 0}, {{t2}}}, 
 +    {"pasta.Carbonara", "pizza.Margherita", {0, -1, 0}, {{t2}}} 
 +
 </code> </code>
  
 ==== Result ==== ==== Result ====
 <file Quanty_Output> <file Quanty_Output>
-text produced as output+Printing the TB Object 
 + 
 +Settings of a tight binding model:  
 + 
 +printout of Crystal Structure 
 +Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions 
 +Unit cell parameters: 
 +a:       0.0000000       0.0000000       0.0000000 
 +b:       0.0000000       0.0000000       0.0000000 
 +c:       0.0000000       0.0000000       0.0000000 
 +Reciprocal latice: 
 +a:       0.0000000 30524692131128596033898117733842076213019192344605263171345790071216510328003874622266126017805876259535366806940969625873947115114721700264263639077479994600233826779136.0000000 1469218886842792161082556356812066608987064236852910356089627265978131596617755845105555332403223378390597352733941003451523713467849651601093598519555579669832275433929014952247745114139290238976.0000000 
 +b:       0.0000000       0.0000000 90960625277508849958397981692689239784491225441894123063561438202878853747680593734840616283814676646691536819002770131304362257795846217274641593397548217458628790833363103687190963464137327730221337512979694186028748242944.0000000 
 +c:       0.0000000 14107223910934044308904371602649936698982067006821564283097987256794599528798179656616663629775957882874925536671725932884293417340363744679036673366848766811353566910460765161922523069153280.0000000 73429234843382957416571002197742812553809563142104530001750273049746504128625765208852406031284161247014915814559263665977548191119922018187373791315790938478048641072290406586019038135878180088386949792875281819263322554368.0000000 
 +Number of atoms 0 
 +Containing a total number of 0 orbitals 
 +Hopping definitions ( 0 ) 
 + 
 + 
 +Callable Properties: 
 +Cell: { { 6.0134700169991e-154 , 1.0216608544487e-259 , 2.7856078039899e-91 } ,  
 +  { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } ,  
 +  { 4.4759381595362e-91 , 4.4759381595362e-91 , 4.4759381595362e-91 } } 
 +Units: { 2Pi , Angstrom , Absolute } 
 +Atoms:
 +Hopping: Hopping 
 +NF: 0 
 + 
 +Settings of a tight binding model: My wishes for dinner 
 + 
 +printout of Crystal Structure 
 +Units: 2Pi (g.r=2Pi) Bohr     Relative atom positions 
 +Unit cell parameters: 
 +a:       1.0000000       0.0000000       0.0000000 
 +b:       0.0000000       1.0000000       0.0000000 
 +c:       0.0000000       0.0000000       1.0000000 
 +Reciprocal latice: 
 +a:       6.2831853       0.0000000       0.0000000 
 +b:       0.0000000       6.2831853       0.0000000 
 +c:       0.0000000       0.0000000       6.2831853 
 +Number of atoms 2 
 +#   0 | pizza ( 0 ) at position {       0.0000000 ,       0.0000000 ,       0.0000000 } 
 +      | Margherita shell with 1 orbitals { 0 } 
 +#   1 | pasta ( 0 ) at position {       0.0000000 ,       1.0000000 ,       0.0000000 } 
 +      | Pesto shell with 1 orbitals { 0 } 
 +      | Carbonara shell with 1 orbitals { 0 } 
 +Containing a total number of 3 orbitals 
 +Hopping definitions ( 4 ) 
 +Hopping from 0 : pizza - Margherita to 1 : pasta - Pesto with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00  1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.00000000E+00  
 + 
 +Hopping from 1 : pasta - Pesto to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  1.00000000E+00  
 + 
 +Hopping from 0 : pizza - Margherita to 1 : pasta - Carbonara with translation vector in unit cells: { 0 , 1 , 0 } ({ 0.00000000E+00  1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  2.00000000E+00  
 + 
 +Hopping from 1 : pasta - Carbonara to 0 : pizza - Margherita with translation vector in unit cells: { 0 , -1 , 0 } ({ 0.00000000E+00 -1.00000000E+00  0.00000000E+00 }) 
 +Matrix = 
 +Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) 
 +          [           0] 
 +[     0]  2.00000000E+00 
 </file> </file>
  
Print/export