Directional X-ray Spectroscopy, Potential Bug

asked by Charles Cardot (2023/04/07 23:56)

Hello,

I have been experimenting with calculating direction dependent x-ray emission using Quanty and the DFT+MLFT framework. However, I seem to be running into an issue with the mean field operators calculated from the Tight Binding (TB) object.

The directional dependence is encoded in the DFT step, where I distort the crystal lattice slightly (~2%) along a particular axis.

 # lattice constants;
 @l@ 4.27633759 4.18633759 4.18633759
 # set axis angles
 @a@ 90. 90. 90.
 # setup Wyckoff positions
 @n@2
 # Now, give list of ALL !!! Wyckoff positions.
 @1@ Ni @ 0.00000000  0.00000000  0.00000000
 @2@ O  @ 0.00000000  0.00000000  0.50000000

When I stretch along the a-axis and go through the regular Wannierization process to create a tight binding Hamiltonian, I get an HDFT that looks like

a_stretched_HDFT: https://drive.google.com/file/d/1sE72v2rbbPM9Bof4Hg_CgNgvqmtjKjYY/view?usp=share_link

which makes sense in the context of the distorted octahedral crystal field. The xy and xz orbitals are still degenerate, while the yz is now lower energy. Also the z^2-r^2 and x^2-y^2 orbitals become mixed. The MLFT calculation within Quanty proceeds much the same way as described in the 2022 and 2019 Heidelberg tutorials for DFT + MLFT, where the mean field components Coulomb interaction is subtracted from HDFT to avoid double counting. The full code that I am running can be found here (https://drive.google.com/drive/folders/1G0iSTfIMT8i39CWWg1StEs5Kj26ZYQ1W?usp=share_link), but an excerpt is shown below.

  print("--Define Intermediate State Hamiltonian--\n")
  --Hamiltonian = HDFT + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  Hamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT
  Hamiltonian = Hamiltonian + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  Hamiltonian = Hamiltonian + zeta_3d * Oppldots_3d
  Hamiltonian = Hamiltonian + F0sd*OppF0sd
  Hamiltonian = Hamiltonian/2
  Hamiltonian = Hamiltonian + ConjugateTranspose(Hamiltonian)
  
  esinter      = -nd*Usd
  edinter      = -((-20*Delta + 19*nd*Udd+nd*nd*Udd+40*Usd)/(2*(10+nd)))
  eLinter      = nd*((1+nd)*Udd/2 - Delta + 2*Usd)/(10+nd)
  
  OperatorSetTrace(Hamiltonian,esinter,Index["Ni_1s"])
  OperatorSetTrace(Hamiltonian,edinter,Index["Ni_3d"])
  OperatorSetTrace(Hamiltonian,eLinter,Index["Ligand_d"])
  
  print("--Define XES-Hamiltonian--\n")
  --XESHamiltonian = HDFT + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  XESHamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT
  XESHamiltonian = XESHamiltonian + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  XESHamiltonian = XESHamiltonian + zeta_3d * Oppldots_3d
  XESHamiltonian = XESHamiltonian + zeta_2p * Oppldots_2p
  XESHamiltonian = XESHamiltonian + F0pd * OppUpdF0 + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3
  XESHamiltonian = XESHamiltonian/2
  XESHamiltonian = XESHamiltonian + ConjugateTranspose(XESHamiltonian)
  
  epfinal      = -nd*Upd
  edfinal      = -((-20*Delta + 19*nd*Udd + nd*nd*Udd + 120*Upd)/(2*(10 + nd)))
  eLfinal      = nd*(-2*Delta + Udd + nd*Udd + 12*Upd)/(2*(10 + nd))
  
  OperatorSetTrace(XESHamiltonian,epfinal,Index["Ni_2p"])
  OperatorSetTrace(XESHamiltonian,edfinal,Index["Ni_3d"])
  OperatorSetTrace(XESHamiltonian,eLfinal,Index["Ligand_d"])
  
  print("--Compute eigenstates--\n")
  -- we now can create the lowest Npsi eigenstates:
  Npsi=6
  StartRestrictions = {NFermi, 0, {DeterminantString(NFermi,Index["Ni_1s"]),1,1},
  {DeterminantString(NFermi,Index["Ni_3d"],Index["Ligand"]),16+nd,16+nd},
  {DeterminantString(NFermi,Index["Ni_2p"]),6,6}}
  psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi, {{'Zero',1e-12},{'Epsilon',1e-12}})
  psiList = Chop(psiList)
  print(StartRestrictions)
  
  Npsiline = {}
  for i=1,Npsi,1
  do
      table.insert(Npsiline,1)
  end
  print("Npsiline")
  print(Npsiline)
  
  
  print("--Create the Spectra--\n")
  
  Emin = -50
  Emax = 50
  NE= 50000
  
  -- Constant Lorentzian Broadening --
  ------------------------------------
  Gamma = 0.1
  ------------------------------------
  ----------- For Sticks -------------
  Spectra_z = CreateSpectra(XESHamiltonian, TXESzdag, psiList, {{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}})
  Spectra_x = CreateSpectra(XESHamiltonian, TXESxdag, psiList, {{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}})
  Spectra_y = CreateSpectra(XESHamiltonian, TXESydag, psiList, {{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}})
  
  Spectra_z.Broaden(0, 1.9)
  Spectra_x.Broaden(0, 1.9)
  Spectra_y.Broaden(0, 1.9)
  Spectra_z = Spectra.Sum(Spectra_z,Npsiline)
  Spectra_x = Spectra.Sum(Spectra_x,Npsiline)
  Spectra_y = Spectra.Sum(Spectra_y,Npsiline)
  Spectra_z.Print({{"file", "XES_zpol.dat"}})
  Spectra_x.Print({{"file", "XES_xpol.dat"}})
  Spectra_y.Print({{"file", "XES_ypol.dat"}})
  
  print("Finished")

The plotted output looks like

XES_including_MFDFT: https://drive.google.com/file/d/1hYutZdeujtK8lohFPPD7sZ-7z5EN4asl/view?usp=share_link

where clearly the x, y, and z polarized emissions are different. Given that the distortion is along the a-axis, I expect the y and z spectra to be identical, with the x spectra being slightly different. In investigating this, I noticed that omitting the subtraction of the Mean Field DFT contribution,

  print("--Define Intermediate State Hamiltonian--\n")
  Hamiltonian = HDFT + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  --Hamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT
  --Hamiltonian = Hamiltonian + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  Hamiltonian = Hamiltonian + zeta_3d * Oppldots_3d
  Hamiltonian = Hamiltonian + F0sd*OppF0sd
  Hamiltonian = Hamiltonian/2
  Hamiltonian = Hamiltonian + ConjugateTranspose(Hamiltonian)
  
  esinter      = -nd*Usd
  edinter      = -((-20*Delta + 19*nd*Udd+nd*nd*Udd+40*Usd)/(2*(10+nd)))
  eLinter      = nd*((1+nd)*Udd/2 - Delta + 2*Usd)/(10+nd)
  
  OperatorSetTrace(Hamiltonian,esinter,Index["Ni_1s"])
  OperatorSetTrace(Hamiltonian,edinter,Index["Ni_3d"])
  OperatorSetTrace(Hamiltonian,eLinter,Index["Ligand_d"])
  
  print("--Define XES-Hamiltonian--\n")
  XESHamiltonian = HDFT + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  --XESHamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT
  --XESHamiltonian = XESHamiltonian + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4
  XESHamiltonian = XESHamiltonian + zeta_3d * Oppldots_3d
  XESHamiltonian = XESHamiltonian + zeta_2p * Oppldots_2p
  XESHamiltonian = XESHamiltonian + F0pd * OppUpdF0 + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3
  XESHamiltonian = XESHamiltonian/2
  XESHamiltonian = XESHamiltonian + ConjugateTranspose(XESHamiltonian)
  
  epfinal      = -nd*Upd
  edfinal      = -((-20*Delta + 19*nd*Udd + nd*nd*Udd + 120*Upd)/(2*(10 + nd)))
  eLfinal      = nd*(-2*Delta + Udd + nd*Udd + 12*Upd)/(2*(10 + nd))
  
  OperatorSetTrace(XESHamiltonian,epfinal,Index["Ni_2p"])
  OperatorSetTrace(XESHamiltonian,edfinal,Index["Ni_3d"])
  OperatorSetTrace(XESHamiltonian,eLfinal,Index["Ligand_d"])

causes the issue to go away and the spectra exhibits the expected behavior,

XES_excluding_MFDFT: https://drive.google.com/file/d/157Vyqxn2Ld20tajT0w3anxgFYQB9p8xu/view?usp=share_link,

with the y and z polarized emission lying exactly on top of each other, and the x emission being distinct from the other two directions.

What this tells me is that the crystal structure that is reflected in the tight binding Hamiltonain, HDFT, is indeed correct, and produces the expected directional dependence. However, something about the Coulomb correction is not behaving as expected. I'm not sure if this is an issue of numerical accuracy (the distortion is small) or a potential bug in the implementation of the MeanFieldOperator. Any help that can be provided would be much appreciated.