asked by Riccardo Piombo (2020/04/30 12:10)
Hi there, it seems I've got a problem in PES spectrum computation: I obtain the correct spectrum of a d10 system if I set all the Coulomb interaction equal to zero. It should be the same also in the interacting case because I'm adding a single hole to the system, but it doesn't happen. Anyone can give me any advice?
Here is the part of the script where I compute the PES Spectrum. If necessary, I can also send you the part of the code in which the Hamiltonian is defined.
A small clarification: the system is a molecule formed by a transition metal and a Ligand atom. I'm considering only the sub-shell 4d of the TM while I'm considering a sub-shell with the same symmetry as the 4d in the Ligand: the latter is formed by the bonding linear combinations of p spin-orbitals.
-- number of fermionic spin-orbitals NF=20 -- number of bosonic modes NB=0 -- 4d spin-orbitals in spherical harmonics basis IndexDn_4d={ 0, 2, 4, 6, 8} IndexUp_4d={ 1, 3, 5, 7, 9} -- Ligand-P spin-orbitals in spherical harmonics basis IndexDn_Ld={10, 12, 14, 16, 18} IndexUp_Ld={11, 13, 15, 17, 19} --######################################### PES Spectrum ######################################### ----------- Hamiltonian diagonalization ----------- Npsi_i = 1 psiList_N = Eigensystem(H_tot, StartRestrictions1, Npsi_i) psiList_N = {psiList_N} oppList={H_tot, OppHopLd4d, OppCF_4d, OppCF_Ld, OppUdd, OppULpLp, OppN_4d, OppN_Ld} print("Done") print("") print("---------- Energies in eV ----------") print("") print(" # <E> <Ehyb> <CF4d> <CFLd> <Udd> <Upp> <N_4d> <N_Ld>"); for i = 1,#psiList_N do io.write(string.format("%3i ",i)) for j = 1,#oppList do expectationvalue = Chop(psiList_N[i]*oppList[j]*psiList_N[i]) io.write(string.format("%9.5f ",expectationvalue)) end io.write("\n") end if ToDo['Scalar Product'] then print("") print("---------- Scalar product <ψ[i]|ψ[j]> ----------") print("") for i = 1,#psiList_N do for j = 1,#psiList_N do io.write(string.format("%3i %3i ",i,j)) scalar_product = Chop(psiList_N[i]*psiList_N[j]) io.write(string.format("%8.3f ",scalar_product)) end io.write("\n") end end ----------- chemical potential ----------- -- Fermi energy is not defined in the experimental data so we have to fix -- it and then freely translate the experimental spectrum along w axis -- Three possible choices: μ+ , μ- , mean μ -- μ- : chemical potential to remove a particle print("") print("(N-1)-body states energies computation") StartRestrictions_rem = {NF, NB, {"1111111111 1111111111",nL + (n4d-1),nL + (n4d-1)}} psiList_Nminus1 = Eigensystem(H_tot, StartRestrictions_rem, 1) psiList_Nminus1 = {psiList_Nminus1} E_gs_N = psiList_N[1]*(H_tot)*psiList_N[1] E_gs_Nminus1 = psiList_Nminus1[1]*(H_tot)*psiList_Nminus1[1] remove_mu = E_gs_N - E_gs_Nminus1 print("E_gs_N = ", E_gs_N) print("E_GS_N-1 = ", E_gs_Nminus1) print("mu- = ", remove_mu) print("Done") print("") -- μ+ : chemical potential to add a particle print("(N+1)-body states energies computation") StartRestrictions_add = {NF, NB, {"1111111111 1111111111",nL + (n4d+1), nL + (n4d+1)}} psiList_Nplus1 = Eigensystem(H_tot, StartRestrictions_add, 1) psiList_Nplus1 = {psiList_Nplus1} -- check for n4d = 10 -- print(psiList_Nplus1) == is nhil -- E_Gs(N+1) = 0 E_gs_Nplus1 = psiList_Nplus1[1]*(H_tot)*psiList_Nplus1[1] add_mu = E_gs_Nplus1 - E_gs_N print("E_gs_N = ", E_gs_N) print("E_GS_N+1 = ", E_gs_Nplus1) print("mu+ = ", add_mu) print("Done") print("") -- mean μ mean_mu = (add_mu + remove_mu)/2.0 print("mean mu = [(mu+) + (mu-)]/2 = ", mean_mu) print("") ----------- change-basis matrix ----------- Orbitals = {"4d","Ligand-P_d"} YtoK = YtoKMatrix(Orbitals) KtoY = ConjugateTranspose(YtoK) print("YtoK = ") print(YtoK) print("") print("KtoY =") print(KtoY) ----------- PES Spectrum Computation ----------- -- Rotate returns M' = R* M R^T -- the hermitian conjugate to KtoY is YtoK -- we use rotate to obtain Kubic harmonics -- We create a list of operators related to the removal and adding spectrum -- Then the spectral function of each operator in this list is computed -- the output file contains as many columns as many operators are specified in the list. -- The columns can be later combined using a python program to obtain the operators in -- the requested representation -- from T_SW[1] to T_SW[20] there are the operators related to the removal spectrum T_SW = {} for k,v in pairs(IndexUp_4d) do T_SW[#T_SW + 1] = Rotate(NewOperator("An", NF, v-1), KtoY) ---> v-1 provides for the down components -- here #T_SW increases by one T_SW[#T_SW + 1] = Rotate(NewOperator("An", NF, v), KtoY) ---> v provides for the up components end print(T_SW) for k,v in pairs(IndexUp_Ld) do T_SW[#T_SW + 1] = Rotate(NewOperator("An", NF, v-1), KtoY) T_SW[#T_SW + 1] = Rotate(NewOperator("An", NF, v), KtoY) end -- from T_SW[21] to T_SW[40] there are the operators related to the adding spectrum for k,v in pairs(IndexUp_4d) do T_SW[#T_SW + 1] = Rotate(NewOperator("Cr", NF, v-1), KtoY) T_SW[#T_SW + 1] = Rotate(NewOperator("Cr", NF, v), KtoY) end for k,v in pairs(IndexUp_Ld) do T_SW[#T_SW + 1] = Rotate(NewOperator("Cr", NF, v-1), KtoY) T_SW[#T_SW + 1] = Rotate(NewOperator("Cr", NF, v), KtoY) end print("Gamma = ", Gamma) print("Npoint = ", Npoint) print("Gamma unb = ", Gamma_unb) print("Npoint unb = ", Npoint_unb) -- CreateSpectra returns G(ω) = <ψ|O*_2 (ω + E0 + iΓ/2 - O_1)^-1 O_2|ψ> -- where E0 = <ψ|O_1|ψ>. Here O_2 = Σ_m d_m and O_1 = Htot. -- Total spectral wieght G_SW = CreateSpectra(H_tot, T_SW , psiList_N[1], {{"Emin",E_min}, {"Emax",E_max}, {"NE",Npoint}, {"Gamma",Gamma}} ) --G_SW.Shift(remove_mu) G_SW = -(1/math.pi)*G_SW peaks_SW = CreateSpectra(H_tot, T_SW, psiList_N[1], {{"Emin", E_min}, {"Emax",E_max}, {"NE",Npoint_unb}, {'Gamma',Gamma_unb}} ) --peaks_SW.Shift(remove_mu) peaks_SW = -(1/math.pi)*peaks_SW G_SW.Print({{"file","PES_Spectra.dat"}}) peaks_SW.Print({{"file", "Peaks.dat"}})