The fourth example creates wave-functions.
-- We start with the same basis as before NF=6 NB=0 IndexDn={0,2,4} IndexUp={1,3,5} -- We now can create wave functions. For this we -- need three inputs: -- (1) The number of Fermions and Bosons -- (2) A list defining the wavefunctions. The lists -- consists of a string defining a determinant by -- its occupation: (1 occupied, 0 empty). One bit -- for each fermion, 8 bit for a boson (i.e. a -- boson can have an occupation between 0 and 255). -- (3) A number giving the pre-factor of the -- determinant. psi0=NewWavefunction(NF, NB, {{"100000",math.sqrt(1/2)}, {"000001",math.sqrt(1/2)}}) -- We can print the function print(psi0) -- The name of the wave function is generic, we can -- set it psi0.Name = "psi 0" print(psi0) -- We now could create all one electron functions -- in the basis of the p-shell. psi0=NewWavefunction(NF,NB,{{"100000",1}}) psi0.Name = "psi(1 -1 1/2 -1/2)" psi1=NewWavefunction(NF,NB,{{"001000",1}}) psi1.Name = "psi(1 0 1/2 -1/2)" psi2=NewWavefunction(NF,NB,{{"000010",1}}) psi2.Name = "psi(1 1 1/2 -1/2)" psi3=NewWavefunction(NF,NB,{{"010000",1}}) psi3.Name = "psi(1 -1 1/2 1/2)" psi4=NewWavefunction(NF,NB,{{"000100",1}}) psi4.Name = "psi(1 0 1/2 1/2)" psi5=NewWavefunction(NF,NB,{{"000001",1}}) psi5.Name = "psi(1 1 1/2 1/2)" -- And print them print("============================") print(psi0) print(psi1) print(psi2) print(psi3) print(psi4) print(psi5) print("============================") -- The wavefunctions should be orthonormal, we can -- easily test this psiList={psi0,psi1,psi2,psi3,psi4,psi5} for i = 1, 6 do for j = 1, 6 do print("<",psiList[i].Name," | ", psiList[j].Name," > =",psiList[i] * psiList[j]) end end print("============================") -- in table or matrix form: psiList={psi0,psi1,psi2,psi3,psi4,psi5} for i = 1, 6 do for j = 1, 6 do io.write(string.format("%3i ",psiList[i] * psiList[j])) end io.write("\n") end
The output is:
WaveFunction: Wave Function QComplex = 0 (Real==0 or Complex==1) N = 2 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 7.071067811865E-01 100000 2 7.071067811865E-01 000001 WaveFunction: psi 0 QComplex = 0 (Real==0 or Complex==1) N = 2 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 7.071067811865E-01 100000 2 7.071067811865E-01 000001 ============================ WaveFunction: psi(1 -1 1/2 -1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 100000 WaveFunction: psi(1 0 1/2 -1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 001000 WaveFunction: psi(1 1 1/2 -1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 000010 WaveFunction: psi(1 -1 1/2 1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 010000 WaveFunction: psi(1 0 1/2 1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 000100 WaveFunction: psi(1 1 1/2 1/2) QComplex = 0 (Real==0 or Complex==1) N = 1 (Number of basis functions used to discribe psi) NFermionic modes = 6 (Number of fermions in the one particle basis) NBosonic modes = 0 (Number of bosons in the one particle basis) # pre-factor Determinant 1 1.000000000000E+00 000001 ============================ < psi(1 -1 1/2 -1/2) | psi(1 -1 1/2 -1/2) > = 1 < psi(1 -1 1/2 -1/2) | psi(1 0 1/2 -1/2) > = 0 < psi(1 -1 1/2 -1/2) | psi(1 1 1/2 -1/2) > = 0 < psi(1 -1 1/2 -1/2) | psi(1 -1 1/2 1/2) > = 0 < psi(1 -1 1/2 -1/2) | psi(1 0 1/2 1/2) > = 0 < psi(1 -1 1/2 -1/2) | psi(1 1 1/2 1/2) > = 0 < psi(1 0 1/2 -1/2) | psi(1 -1 1/2 -1/2) > = 0 < psi(1 0 1/2 -1/2) | psi(1 0 1/2 -1/2) > = 1 < psi(1 0 1/2 -1/2) | psi(1 1 1/2 -1/2) > = 0 < psi(1 0 1/2 -1/2) | psi(1 -1 1/2 1/2) > = 0 < psi(1 0 1/2 -1/2) | psi(1 0 1/2 1/2) > = 0 < psi(1 0 1/2 -1/2) | psi(1 1 1/2 1/2) > = 0 < psi(1 1 1/2 -1/2) | psi(1 -1 1/2 -1/2) > = 0 < psi(1 1 1/2 -1/2) | psi(1 0 1/2 -1/2) > = 0 < psi(1 1 1/2 -1/2) | psi(1 1 1/2 -1/2) > = 1 < psi(1 1 1/2 -1/2) | psi(1 -1 1/2 1/2) > = 0 < psi(1 1 1/2 -1/2) | psi(1 0 1/2 1/2) > = 0 < psi(1 1 1/2 -1/2) | psi(1 1 1/2 1/2) > = 0 < psi(1 -1 1/2 1/2) | psi(1 -1 1/2 -1/2) > = 0 < psi(1 -1 1/2 1/2) | psi(1 0 1/2 -1/2) > = 0 < psi(1 -1 1/2 1/2) | psi(1 1 1/2 -1/2) > = 0 < psi(1 -1 1/2 1/2) | psi(1 -1 1/2 1/2) > = 1 < psi(1 -1 1/2 1/2) | psi(1 0 1/2 1/2) > = 0 < psi(1 -1 1/2 1/2) | psi(1 1 1/2 1/2) > = 0 < psi(1 0 1/2 1/2) | psi(1 -1 1/2 -1/2) > = 0 < psi(1 0 1/2 1/2) | psi(1 0 1/2 -1/2) > = 0 < psi(1 0 1/2 1/2) | psi(1 1 1/2 -1/2) > = 0 < psi(1 0 1/2 1/2) | psi(1 -1 1/2 1/2) > = 0 < psi(1 0 1/2 1/2) | psi(1 0 1/2 1/2) > = 1 < psi(1 0 1/2 1/2) | psi(1 1 1/2 1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 -1 1/2 -1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 0 1/2 -1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 1 1/2 -1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 -1 1/2 1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 0 1/2 1/2) > = 0 < psi(1 1 1/2 1/2) | psi(1 1 1/2 1/2) > = 1 ============================ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1