Eigenstates

The sixth example discusses eigenstates.

Eigenstates.Quanty
-- Using operators and wavefunctions as explained in 
-- the Operators and Wavefunctions example
-- and being able to multiply them to get
-- expectation values we can continue and look
-- at eigenstates of operators
 
-- define the basis
  -- For a p-shell we would like the have 6 
  -- spinorbitals, with the quantum numbers 
  -- spin up ml=-1,ml=0,ml=1 and
  -- spin down with ,ml=-1, ml=0, ml=1
NF=6
NB=0
IndexDn={0,2,4}
IndexUp={1,3,5}
 
-- Define spin and angular momentum operators.
OppSx   =NewOperator("Sx"   ,NF,IndexUp,IndexDn)
OppSy   =NewOperator("Sy"   ,NF,IndexUp,IndexDn)
OppSz   =NewOperator("Sz"   ,NF,IndexUp,IndexDn)
OppSsqr =NewOperator("Ssqr" ,NF,IndexUp,IndexDn)
OppSplus=NewOperator("Splus",NF,IndexUp,IndexDn)
OppSmin =NewOperator("Smin" ,NF,IndexUp,IndexDn)
 
OppLx   =NewOperator("Lx"   ,NF,IndexUp,IndexDn)
OppLy   =NewOperator("Ly"   ,NF,IndexUp,IndexDn)
OppLz   =NewOperator("Lz"   ,NF,IndexUp,IndexDn)
OppLsqr =NewOperator("Lsqr" ,NF,IndexUp,IndexDn)
OppLplus=NewOperator("Lplus",NF,IndexUp,IndexDn)
OppLmin =NewOperator("Lmin" ,NF,IndexUp,IndexDn)
 
OppJx   =NewOperator("Jx"   ,NF,IndexUp,IndexDn)
OppJy   =NewOperator("Jy"   ,NF,IndexUp,IndexDn)
OppJz   =NewOperator("Jz"   ,NF,IndexUp,IndexDn)
OppJsqr =NewOperator("Jsqr" ,NF,IndexUp,IndexDn)
OppJplus=NewOperator("Jplus",NF,IndexUp,IndexDn)
OppJmin =NewOperator("Jmin" ,NF,IndexUp,IndexDn)
 
Oppldots=NewOperator("ldots",NF,IndexUp,IndexDn)
 
-- Define the coulomb operator
-- We here define the part depending on F0 
-- separately from the part depending on F2.
-- When summing we can put in the numerical values 
-- of the slater integrals.
OppF0 = NewOperator("U",NF,IndexUp,IndexDn,{1,0})
OppF2 = NewOperator("U",NF,IndexUp,IndexDn,{0,1})
OppU = 5.0 * OppF0 + 4.0 * OppF2
 
-- Note that the previous definition is the same as
-- OppU = NewOperator("U", NF, IndexUp, IndexDn, 
--                         {5.0,4.0})
 
-- Define the Hamiltonian as a numerical sum of the 
-- previous defined operators.
Hamiltonian = 5.0 * OppF0 + 4.0 * OppF2 + 0.000001 * (2*OppSz + OppLz)
Hamiltonian2 = 6.0 * OppF0 + 4.0 * OppF2 + 0.000001 * (2*OppSz + OppLz)
 
-- For large systems we do not need to know all
-- eigenstates, but can restrict ourselves to the
-- Npsi lowest states:
Npsi=15
 
-- In order to make sure we have a filling of 2
-- electrons we need to define some restrictions
StartRestrictions = {NF, NB,  {"111111",2,2}}
 
-- We now can create the lowest Npsi eigenstates:
psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi)
 
oppList={Hamiltonian, OppSsqr, OppLsqr, OppJsqr, OppSz, OppLz, Oppldots, OppF0, OppF2}
 
-- after we've created the eigen states we can look 
-- at a list of their expectation values
print(" <E>     <S^2>   <L^2>   <J^2>   <S_z>   <L_z>   <l.s>   <F[0]>  <F[2]>");
for key,value in pairs(psiList) do
  expvalue = value * oppList * value
  for k,v in pairs(expvalue) do
    io.write(string.format("%7.4f ",v))
  end;
  io.write("\n")
end

The output is:

Eigenstates.out
Start of BlockGroundState. Converge 15 states to an energy with relative variance smaller than  1.490116119384766E-06
 
Start of BlockOperatorPsiSerialRestricted
Outer loop   1, Number of Determinants:        15        15 last variance  3.608398351428264E-01
Start of BlockOperatorPsiSerialRestricted
Start of BlockGroundState. Converge 15 states to an energy with relative variance smaller than  1.490116119384766E-06
 
Start of BlockOperatorPsiSerial
 <E>     <S^2>   <L^2>   <J^2>   <S_z>   <L_z>   <l.s>   <F[0]>  <F[2]>
 4.2000  2.0000  2.0000  6.0000 -1.0000 -1.0000  0.5000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  4.0000 -1.0000  0.0000  0.0000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  4.0000  0.0000 -1.0000  0.0000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  2.0000 -1.0000  1.0000 -0.5000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  4.0000  0.0000  0.0000 -0.0000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  4.0000  0.0000  1.0000  0.0000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  2.0000  1.0000 -1.0000 -0.5000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  4.0000  1.0000  0.0000  0.0000  1.0000 -0.2000 
 4.2000  2.0000  2.0000  6.0000  1.0000  1.0000  0.5000  1.0000 -0.2000 
 5.1600  0.0000  6.0000  6.0000  0.0000 -2.0000  0.0000  1.0000  0.0400 
 5.1600  0.0000  6.0000  6.0000  0.0000 -1.0000  0.0000  1.0000  0.0400 
 5.1600  0.0000  6.0000  6.0000  0.0000  0.0000  0.0000  1.0000  0.0400 
 5.1600  0.0000  6.0000  6.0000  0.0000  1.0000  0.0000  1.0000  0.0400 
 5.1600  0.0000  6.0000  6.0000  0.0000  2.0000  0.0000  1.0000  0.0400 
 6.6000  0.0000 -0.0000 -0.0000  0.0000  0.0000  0.0000  1.0000  0.4000 

Table of contents