{{indexmenu_n>10}}
====== nIXS $L_{2,3}$ ======
###
Besides low energy transitions nIXS can be used as a core level spectroscopy technique. One then measures resonances with non-resonant inelastic x-ray scattering :-).
###
###
The input script:
-- using inelastic x-ray scattering one can not only measure low energy excitations,
-- but equally well core to core transitions. This allows one to probe for example
-- 3p to 3d transitions using octupole operators.
-- We set the output of the program to a minimum
Verbosity(0)
-- we need a 2p and 3d shell
NF=16
NB=0
IndexDn_2p={0,2,4}
IndexUp_2p={1,3,5}
IndexDn_3d={6,8,10,12,14}
IndexUp_3d={7,9,11,13,15}
OppSx =NewOperator("Sx" ,NF, IndexUp_3d, IndexDn_3d)
OppSy =NewOperator("Sy" ,NF, IndexUp_3d, IndexDn_3d)
OppSz =NewOperator("Sz" ,NF, IndexUp_3d, IndexDn_3d)
OppSsqr =NewOperator("Ssqr" ,NF, IndexUp_3d, IndexDn_3d)
OppSplus=NewOperator("Splus",NF, IndexUp_3d, IndexDn_3d)
OppSmin =NewOperator("Smin" ,NF, IndexUp_3d, IndexDn_3d)
OppLx =NewOperator("Lx" ,NF, IndexUp_3d, IndexDn_3d)
OppLy =NewOperator("Ly" ,NF, IndexUp_3d, IndexDn_3d)
OppLz =NewOperator("Lz" ,NF, IndexUp_3d, IndexDn_3d)
OppLsqr =NewOperator("Lsqr" ,NF, IndexUp_3d, IndexDn_3d)
OppLplus=NewOperator("Lplus",NF, IndexUp_3d, IndexDn_3d)
OppLmin =NewOperator("Lmin" ,NF, IndexUp_3d, IndexDn_3d)
OppJx =NewOperator("Jx" ,NF, IndexUp_3d, IndexDn_3d)
OppJy =NewOperator("Jy" ,NF, IndexUp_3d, IndexDn_3d)
OppJz =NewOperator("Jz" ,NF, IndexUp_3d, IndexDn_3d)
OppJsqr =NewOperator("Jsqr" ,NF, IndexUp_3d, IndexDn_3d)
OppJplus=NewOperator("Jplus",NF, IndexUp_3d, IndexDn_3d)
OppJmin =NewOperator("Jmin" ,NF, IndexUp_3d, IndexDn_3d)
Oppldots=NewOperator("ldots",NF, IndexUp_3d, IndexDn_3d)
-- define the coulomb operator
-- we here define the part depending on F0 seperately from the part depending on F2
-- when summing we can put in the numerical values of the slater integrals
OppF0 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {1,0,0})
OppF2 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,1,0})
OppF4 =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,0,1})
Akm = PotentialExpandedOnClm("Oh", 2, {0.6,-0.4})
OpptenDq = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm)
Akm = PotentialExpandedOnClm("Oh", 2, {1,0})
OppNeg = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm)
Akm = PotentialExpandedOnClm("Oh", 2, {0,1})
OppNt2g = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm)
Oppcldots= NewOperator("ldots", NF, IndexUp_2p, IndexDn_2p)
OppUpdF0 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {1,0}, {0,0})
OppUpdF2 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,1}, {0,0})
OppUpdG1 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {1,0})
OppUpdG3 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {0,1})
-- in crystal field theory U drops out of the equation
U = 0.000
F2dd = 11.142
F4dd = 6.874
F0dd = U+(F2dd+F4dd)*2/63
-- in crystal field theory U drops out of the equation
Upd = 0.000
F2pd = 6.667
G1pd = 4.922
G3pd = 2.796
F0pd = Upd + G1pd*1/15 + G3pd*3/70
tenDq = 1.100
zeta_3d = 0.081
zeta_2p = 11.498
Bz = 0.000001
Hamiltonian = F0dd*OppF0 + F2dd*OppF2 + F4dd*OppF4 + tenDq*OpptenDq + zeta_3d*Oppldots + Bz*(2*OppSz + OppLz)
XASHamiltonian = Hamiltonian + zeta_2p * Oppcldots + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3
-- we now can create the lowest Npsi eigenstates:
Npsi=3
-- in order to make sure we have a filling of 2 electrons we need to define some restrictions
StartRestrictions = {NF, NB, {"111111 0000000000",6,6}, {"000000 1111111111",8,8}}
psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi)
oppList={Hamiltonian, OppSsqr, OppLsqr, OppJsqr, OppSz, OppLz, Oppldots, OppF2, OppF4, OppNeg, OppNt2g}
print(" ");
for key,psi in pairs(psiList) do
expvalue = psi * oppList * psi
for k,v in pairs(expvalue) do
io.write(string.format("%6.3f ",v))
end;
io.write("\n")
end
-- in order to calculate nIXS we need to determine the intensity ratio for the different multipole intensities
-- ( see PRL 99, 257401 (2007) for the formalism )
-- in short the A^2 interaction is expanded on spherical harmonics and Bessel functions
-- The 3d Wannier functions are expanded on spherical harmonics and a radial wave function
-- For the radial wave-function we calculate
-- which defines the transition strength for the multipole of order k
-- The radial functions here are calculated for a Ni 2+ atom and stored in the folder NiO_Radial
-- more sophisticated methods can be used
-- read the radial wave functions
-- order of functions
-- r 1S 2S 2P 3S 3P 3D
file = io.open( "NiO_Radial/RnlNi_Atomic_Hartree_Fock", "r")
Rnl = {}
for line in file:lines() do
RnlLine={}
for i in string.gmatch(line, "%S+") do
table.insert(RnlLine,i)
end
table.insert(Rnl,RnlLine)
end
-- some constants
a0 = 0.52917721092
Rydberg = 13.60569253
Hartree = 2*Rydberg
-- pd transitions from 2p (index 4 in Rnl) to 3d (index 7 in Rnl)
--
function RjRpd (q)
Rj1R = 0
Rj3R = 0
dr = Rnl[3][1]-Rnl[2][1]
r0 = Rnl[2][1]-2*dr
for ir = 2, #Rnl, 1 do
r = r0 + ir * dr
Rj1R = Rj1R + Rnl[ir][4] * math.SphericalBesselJ(1,q*r) * Rnl[ir][7] * dr
Rj3R = Rj3R + Rnl[ir][4] * math.SphericalBesselJ(3,q*r) * Rnl[ir][7] * dr
end
return Rj1R, Rj3R
end
-- the angular part is given as C(theta_q, phi_q)^* C(theta_r, phi_r)
-- which is a potential expanded on spherical harmonics
function ExpandOnClm(k,theta,phi,scale)
ret={}
for m=-k, k, 1 do
table.insert(ret,{k,m,scale * math.SphericalHarmonicC(k,m,theta,phi)})
end
return ret
end
-- define nIXS transition operators
function TnIXS_pd(q, theta, phi)
Rj1R, Rj3R = RjRpd(q)
k=1
A1 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj1R)
T1 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A1)
k=3
A3 = ExpandOnClm(k, theta, phi, I^k*(2*k+1)*Rj3R)
T3 = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, A3)
T = T1+T3
T.Chop()
return T
end
-- q in units per a0 (if you want in units per A take 5*a0 to have a q of 5 per A)
q=9.0
print("for q=",q," per a0 (",q / a0," per A) The ratio of k=1 and k=3 transition strength is:", RjRpd(q))
-- define some transition operators
qtheta=0
qphi=0
Tq001 = TnIXS_pd(q,qtheta,qphi)
qtheta=Pi/2
qphi=Pi/4
Tq110 = TnIXS_pd(q,qtheta,qphi)
qtheta=math.acos(math.sqrt(1/3))
qphi=Pi/4
Tq111 = TnIXS_pd(q,qtheta,qphi)
qtheta=math.acos(math.sqrt(9/14))
qphi=math.acos(math.sqrt(1/5))
Tq123 = TnIXS_pd(q,qtheta,qphi)
-- calculate the spectra
nIXSSpectra = CreateSpectra(XASHamiltonian, {Tq001, Tq110, Tq111, Tq123}, psiList, {{"Emin",-10}, {"Emax",20}, {"NE",6000}, {"Gamma",1.0}})
-- print the spectra to a file
nIXSSpectra.Print({{"file","NiOnIXS_L23.dat"}});
-- a gnuplot script to make the plots
gnuplotInput = [[
set autoscale
set xtic auto
set ytic auto
set style line 1 lt 1 lw 1 lc rgb "#FF0000"
set style line 2 lt 1 lw 1 lc rgb "#0000FF"
set style line 3 lt 1 lw 1 lc rgb "#00C000"
set style line 4 lt 1 lw 1 lc rgb "#000000"
set style line 5 lt 1 lw 3 lc rgb "#808080"
set xlabel "E (eV)" font "Times,12"
set ylabel "Intensity (arb. units)" font "Times,12"
set out 'NiOnIXS_L23.ps'
set size 1.0, 0.3
set terminal postscript portrait enhanced color "Times" 8
energyshift=857.6
plot "NiOnIXS_L23.dat" using ($1+energyshift):(-$9 -$11 -$13 +0.16) title '011' with lines ls 2,\
"NiOnIXS_L23.dat" using ($1+energyshift):(-$15 -$17 -$19 +0.11) title '111' with lines ls 3,\
"NiOnIXS_L23.dat" using ($1+energyshift):(-$21 -$23 -$25 +0.06) title '123' with lines ls 4,\
"NiOnIXS_L23.dat" using ($1+energyshift):(-$3 -$5 -$7 +0.01) title '001' with lines ls 1
]]
-- write the gnuplot script to a file
file = io.open("NiOnIXS_L23.gnuplot", "w")
file:write(gnuplotInput)
file:close()
-- call gnuplot to execute the script
os.execute("gnuplot NiOnIXS_L23.gnuplot")
-- transform to pdf and eps
os.execute("ps2pdf NiOnIXS_L23.ps ; ps2eps NiOnIXS_L23.ps ; mv NiOnIXS_L23.eps temp.eps ; eps2eps temp.eps NiOnIXS_L23.eps ; rm temp.eps")
###
###
The spectrum produced:
###
|{{:documentation:tutorials:nio_crystal_field:nionixs_l23.png?nolink |}}|
^ $2p$ to $3d$ excitations as one would measure using non-resonant inelastic x-ray scattering. ^
###
The output to standard out is:
-2.444 1.999 12.000 15.118 -0.994 -0.285 -0.331 -1.020 -0.878 2.011 5.989
-2.444 1.999 12.000 15.118 -0.000 -0.000 -0.331 -1.020 -0.878 2.011 5.989
-2.444 1.999 12.000 15.118 0.994 0.285 -0.331 -1.020 -0.878 2.011 5.989
for q= 9 per a0 ( 17.007535121086 per A) The ratio of k=1 and k=3 transition strength is: 0.081284239649905 0.04426369559805
###
===== Table of contents =====
{{indexmenu>.#1|msort}}