{{indexmenu_n>999}} ====== Sqrt ====== ### Matrix.Sqrt($M$) takes a quadratic matrix $M$ and returns $\sqrt{M}$, which is defined by the property $\sqrt{M}\sqrt{M} = M$. M must be Hermitian and positive definite. ### ===== Example ===== ==== Input ==== M = {{1,2*I}, {-2*I,4}} print("M:") print(M) sqrtM = Matrix.Sqrt(M) print("sqrt(M):") print(sqrtM) print("sqrt(M)*sqrt(M)") print(sqrtM*sqrtM) ==== Result ==== M: { { 1 , (0 + 2 I) } , { (-0 - 2 I) , 4 } } sqrt(M): { { 0.44721359549996 , (0 + 0.89442719099992 I) } , { (0 - 0.89442719099992 I) , 1.7888543819998 } } sqrt(M)*sqrt(M) { { 1 , (0 + 2 I) } , { (0 - 2 I) , 4 } } ===== Table of contents ===== {{indexmenu>..:#2|tsort}}