In the D3h Point Group, with orientation Zy there are the following symmetry operations
Operator | Orientation |
---|---|
E | {0,0,0} , |
C3 | {0,0,1} , {0,0,−1} , |
C2 | {0,1,0} , {√3,1,0} , {−√3,1,0} , |
σh | {0,0,1} , |
S3 | {0,0,1} , {0,0,−1} , |
σv | {1,0,0} , {1,√3,0} , {1,−√3,0} , |
E(1) | C3(2) | C2(3) | σh(1) | S3(2) | σv(3) | |
---|---|---|---|---|---|---|
A′1 | 1 | 1 | 1 | 1 | 1 | 1 |
A′2 | 1 | 1 | −1 | 1 | 1 | −1 |
E' | 2 | −1 | 0 | 2 | −1 | 0 |
A1″ | 1 | 1 | 1 | -1 | -1 | -1 |
A''_2 | 1 | 1 | -1 | -1 | -1 | 1 |
\text{E''} | 2 | -1 | 0 | -2 | 1 | 0 |
A'_1 | A'_2 | \text{E'} | A''_1 | A''_2 | \text{E''} | |
---|---|---|---|---|---|---|
A'_1 | A'_1 | A'_2 | \text{E'} | A''_1 | A''_2 | \text{E''} |
A'_2 | A'_2 | A'_1 | \text{E'} | A''_2 | A''_1 | \text{E''} |
\text{E'} | \text{E'} | \text{E'} | A'_1+A'_2+\text{E'} | \text{E''} | \text{E''} | A''_1+A''_2+\text{E''} |
A''_1 | A''_1 | A''_2 | \text{E''} | A'_1 | A'_2 | \text{E'} |
A''_2 | A''_2 | A''_1 | \text{E''} | A'_2 | A'_1 | \text{E'} |
\text{E''} | \text{E''} | \text{E''} | A''_1+A''_2+\text{E''} | \text{E'} | \text{E'} | A'_1+A'_2+\text{E'} |
Any potential (function) can be written as a sum over spherical harmonics. V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi) Here A_{k,m}(r) is a radial function and C^{(m)}_k(\theta,\phi) a renormalised spherical harmonics. C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi) The presence of symmetry induces relations between the expansion coefficients such that V(r,\theta,\phi) is invariant under all symmetry operations. For the D3h Point group with orientation Zy the form of the expansion coefficients is:
A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ A(2,0) & k=2\land m=0 \\ i B(3,3) & k=3\land (m=-3\lor m=3) \\ A(4,0) & k=4\land m=0 \\ i B(5,3) & k=5\land (m=-3\lor m=3) \\ A(6,6) & k=6\land (m=-6\lor m=6) \\ A(6,0) & k=6\land m=0 \end{cases}
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {I*B[3, 3], k == 3 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {I*B[5, 3], k == 5 && (m == -3 || m == 3)}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {A[6, 0], k == 6 && m == 0}}, 0]
Akm = {{0, 0, A(0,0)} , {2, 0, A(2,0)} , {3,-3, (I)*(B(3,3))} , {3, 3, (I)*(B(3,3))} , {4, 0, A(4,0)} , {5,-3, (I)*(B(5,3))} , {5, 3, (I)*(B(5,3))} , {6, 0, A(6,0)} , {6,-6, A(6,6)} , {6, 6, A(6,6)} }
The operator representing the potential in second quantisation is given as: O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'} For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. \psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi). With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle Note the difference between the function A_{k,m} and the parameter A_{n''l'',n'l'}(k,m)
we can express the operator as O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}
The table below shows the expectation value of O on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle A_{l'',l'}(k,m) can be complex. Instead of allowing complex parameters we took A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m) (with both A and B real) as the expansion parameter.
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{Y_{0}^{(0)}} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ -\frac{i \text{Bsf}(3,3)}{\sqrt{7}} } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{i \text{Bsf}(3,3)}{\sqrt{7}} } |
{Y_{-1}^{(1)}} | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3}{7} i \text{Bpd}(3,3) } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | 0 |
{Y_{0}^{(1)}} | \color{darkred}{ 0 } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
{Y_{1}^{(1)}} | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ \frac{3}{7} i \text{Bpd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
{Y_{-2}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{3}{7} i \text{Bpd}(3,3) } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{2}{7}} \text{Bdf}(3,3)-\frac{5}{33} i \sqrt{2} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} i \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } |
{Y_{0}^{(2)}} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{2}{33} i \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{2}{33} i \sqrt{5} \text{Bdf}(5,3) } |
{Y_{1}^{(2)}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} i \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{2}^{(2)}} | 0 | \color{darkred}{ -\frac{3}{7} i \text{Bpd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} i \sqrt{\frac{2}{7}} \text{Bdf}(3,3)-\frac{5}{33} i \sqrt{2} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
{Y_{-3}^{(3)}} | \color{darkred}{ \frac{i \text{Bsf}(3,3)}{\sqrt{7}} } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{33} i \sqrt{5} \text{Bdf}(5,3)-\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 | -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) |
{Y_{-2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{4}{33} i \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
{Y_{-1}^{(3)}} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5}{33} i \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} i \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
{Y_{0}^{(3)}} | \color{darkred}{ 0 } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
{Y_{1}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ \frac{5}{33} i \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} i \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
{Y_{2}^{(3)}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3)-\frac{4}{33} i \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
{Y_{3}^{(3)}} | \color{darkred}{ \frac{i \text{Bsf}(3,3)}{\sqrt{7}} } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{33} i \sqrt{5} \text{Bdf}(5,3)-\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
{Y_{0}^{(0)}} | {Y_{-1}^{(1)}} | {Y_{0}^{(1)}} | {Y_{1}^{(1)}} | {Y_{-2}^{(2)}} | {Y_{-1}^{(2)}} | {Y_{0}^{(2)}} | {Y_{1}^{(2)}} | {Y_{2}^{(2)}} | {Y_{-3}^{(3)}} | {Y_{-2}^{(3)}} | {Y_{-1}^{(3)}} | {Y_{0}^{(3)}} | {Y_{1}^{(3)}} | {Y_{2}^{(3)}} | {Y_{3}^{(3)}} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | 1 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | 1 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 1 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | \frac{i}{\sqrt{2}} |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{i}{\sqrt{2}} | 0 | 0 | 0 | -\frac{i}{\sqrt{2}} | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{i}{\sqrt{2}} | 0 | \frac{i}{\sqrt{2}} | 0 | 0 |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{1}{\sqrt{2}} | 0 | -\frac{1}{\sqrt{2}} | 0 | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | \frac{1}{\sqrt{2}} | 0 |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \frac{1}{\sqrt{2}} | 0 | 0 | 0 | 0 | 0 | -\frac{1}{\sqrt{2}} |
After rotation we find
\text{s} | p_y | p_z | p_x | d_{\text{xy}} | d_{\text{yz}} | d_{3z^2-r^2} | d_{\text{xz}} | d_{x^2-y^2} | f_{y\left(3x^2-y^2\right)} | f_{\text{xyz}} | f_{y\left(5z^2-r^2\right)} | f_{z\left(5z^2-3r^2\right)} | f_{x\left(5z^2-r^2\right)} | f_{z\left(x^2-y^2\right)} | f_{x\left(x^2-3y^2\right)} | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\text{s} | \text{Ass}(0,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \frac{\text{Asd}(2,0)}{\sqrt{5}} | 0 | 0 | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Bsf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
p_y | \color{darkred}{ 0 } | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3}{7} \text{Bpd}(3,3) } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | 0 | 0 |
p_z | \color{darkred}{ 0 } | 0 | \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | 0 | 0 |
p_x | \color{darkred}{ 0 } | 0 | 0 | \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) | \color{darkred}{ \frac{3}{7} \text{Bpd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 |
d_{\text{xy}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{3}{7} \text{Bpd}(3,3) } | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | 0 | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5}{33} \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{yz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } |
d_{3z^2-r^2} | \frac{\text{Asd}(2,0)}{\sqrt{5}} | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) | 0 | 0 | \color{darkred}{ \frac{2}{33} \sqrt{10} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{\text{xz}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
d_{x^2-y^2} | 0 | \color{darkred}{ \frac{3}{7} \text{Bpd}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5}{33} \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } |
f_{y\left(3x^2-y^2\right)} | \color{darkred}{ \sqrt{\frac{2}{7}} \text{Bsf}(3,3) } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{2}{33} \sqrt{10} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{10}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)-\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) | 0 | 0 | 0 | 0 | 0 | 0 |
f_{\text{xyz}} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 | 0 |
f_{y\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ \frac{5}{33} \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 | 0 | 0 |
f_{z\left(5z^2-3r^2\right)} | \color{darkred}{ 0 } | 0 | \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) | 0 | 0 | 0 |
f_{x\left(5z^2-r^2\right)} | \color{darkred}{ 0 } | 0 | 0 | \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) | \color{darkred}{ \frac{5}{33} \sqrt{2} \text{Bdf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) | 0 | 0 |
f_{z\left(x^2-y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3,3)+\frac{4}{33} \sqrt{5} \text{Bdf}(5,3) } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) | 0 |
f_{x\left(x^2-3y^2\right)} | \color{darkred}{ 0 } | 0 | 0 | 0 | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | \color{darkred}{ 0 } | 0 | 0 | 0 | 0 | 0 | 0 | \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) |
Although the parameters A_{l'',l'}(k,m) uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters A_{l'',l'}(k,m) by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum l'' and l'.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C\inftyv | D\inftyh |