~~CLOSETOC~~
====== Orientation Zx ======
===== Symmetry Operations =====
###
In the D3h Point Group, with orientation Zx there are the following symmetry operations
###
###
{{:physics_chemistry:pointgroup:d3h_zx.png}}
###
###
^ Operator ^ Orientation ^
^ $\text{E}$ | $\{0,0,0\}$ , |
^ $C_3$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
^ $C_2$ | $\{1,0,0\}$ , $\left\{1,\sqrt{3},0\right\}$ , $\left\{1,-\sqrt{3},0\right\}$ , |
^ $\sigma _h$ | $\{0,0,1\}$ , |
^ $S_3$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
^ $\sigma _v$ | $\{0,1,0\}$ , $\left\{\sqrt{3},1,0\right\}$ , $\left\{-\sqrt{3},1,0\right\}$ , |
###
===== Different Settings =====
###
* [[physics_chemistry:point_groups:d3h:orientation_zx|Point Group D3h with orientation Zx]]
* [[physics_chemistry:point_groups:d3h:orientation_zy|Point Group D3h with orientation Zy]]
###
===== Character Table =====
###
| $ $ ^ $ \text{E} \,{\text{(1)}} $ ^ $ C_3 \,{\text{(2)}} $ ^ $ C_2 \,{\text{(3)}} $ ^ $ \sigma_h \,{\text{(1)}} $ ^ $ S_3 \,{\text{(2)}} $ ^ $ \sigma_v \,{\text{(3)}} $ ^
^ $ A'_1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ |
^ $ A'_2 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ |
^ $ \text{E'} $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 2 $ | $ -1 $ | $ 0 $ |
^ $ A''_1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ |
^ $ A''_2 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ 1 $ |
^ $ \text{E''} $ | $ 2 $ | $ -1 $ | $ 0 $ | $ -2 $ | $ 1 $ | $ 0 $ |
###
===== Product Table =====
###
| $ $ ^ $ A'_1 $ ^ $ A'_2 $ ^ $ \text{E'} $ ^ $ A''_1 $ ^ $ A''_2 $ ^ $ \text{E''} $ ^
^ $ A'_1 $ | $ A'_1 $ | $ A'_2 $ | $ \text{E'} $ | $ A''_1 $ | $ A''_2 $ | $ \text{E''} $ |
^ $ A'_2 $ | $ A'_2 $ | $ A'_1 $ | $ \text{E'} $ | $ A''_2 $ | $ A''_1 $ | $ \text{E''} $ |
^ $ \text{E'} $ | $ \text{E'} $ | $ \text{E'} $ | $ A'_1+A'_2+\text{E'} $ | $ \text{E''} $ | $ \text{E''} $ | $ A''_1+A''_2+\text{E''} $ |
^ $ A''_1 $ | $ A''_1 $ | $ A''_2 $ | $ \text{E''} $ | $ A'_1 $ | $ A'_2 $ | $ \text{E'} $ |
^ $ A''_2 $ | $ A''_2 $ | $ A''_1 $ | $ \text{E''} $ | $ A'_2 $ | $ A'_1 $ | $ \text{E'} $ |
^ $ \text{E''} $ | $ \text{E''} $ | $ \text{E''} $ | $ A''_1+A''_2+\text{E''} $ | $ \text{E'} $ | $ \text{E'} $ | $ A'_1+A'_2+\text{E'} $ |
###
===== Sub Groups with compatible settings =====
###
* [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]]
* [[physics_chemistry:point_groups:c2:orientation_x|Point Group C2 with orientation X]]
* [[physics_chemistry:point_groups:c3h:orientation_z|Point Group C3h with orientation Z]]
* [[physics_chemistry:point_groups:c3v:orientation_zy|Point Group C3v with orientation Zy]]
* [[physics_chemistry:point_groups:c3:orientation_z|Point Group C3 with orientation Z]]
* [[physics_chemistry:point_groups:cs:orientation_y|Point Group Cs with orientation Y]]
* [[physics_chemistry:point_groups:cs:orientation_z|Point Group Cs with orientation Z]]
* [[physics_chemistry:point_groups:d3:orientation_zx|Point Group D3 with orientation Zx]]
###
===== Super Groups with compatible settings =====
###
* [[physics_chemistry:point_groups:d6h:orientation_zx|Point Group D6h with orientation Zx]]
* [[physics_chemistry:point_groups:d6h:orientation_zy|Point Group D6h with orientation Zy]]
###
===== Invariant Potential expanded on renormalized spherical Harmonics =====
###
Any potential (function) can be written as a sum over spherical harmonics.
$$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$
Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$
The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the D3h Point group with orientation Zx the form of the expansion coefficients is:
###
==== Expansion ====
###
$$A_{k,m} = \begin{cases}
A(0,0) & k=0\land m=0 \\
A(2,0) & k=2\land m=0 \\
-A(3,3) & k=3\land m=-3 \\
A(3,3) & k=3\land m=3 \\
A(4,0) & k=4\land m=0 \\
-A(5,3) & k=5\land m=-3 \\
A(5,3) & k=5\land m=3 \\
A(6,6) & k=6\land (m=-6\lor m=6) \\
A(6,0) & k=6\land m=0
\end{cases}$$
###
==== Input format suitable for Mathematica (Quanty.nb) ====
###
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {-A[3, 3], k == 3 && m == -3}, {A[3, 3], k == 3 && m == 3}, {A[4, 0], k == 4 && m == 0}, {-A[5, 3], k == 5 && m == -3}, {A[5, 3], k == 5 && m == 3}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {A[6, 0], k == 6 && m == 0}}, 0]
###
==== Input format suitable for Quanty ====
###
Akm = {{0, 0, A(0,0)} ,
{2, 0, A(2,0)} ,
{3,-3, (-1)*(A(3,3))} ,
{3, 3, A(3,3)} ,
{4, 0, A(4,0)} ,
{5,-3, (-1)*(A(5,3))} ,
{5, 3, A(5,3)} ,
{6, 0, A(6,0)} ,
{6,-6, A(6,6)} ,
{6, 6, A(6,6)} }
###
==== One particle coupling on a basis of spherical harmonics ====
###
The operator representing the potential in second quantisation is given as:
$$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter.
$$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$
Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$
###
###
we can express the operator as
$$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
###
###
The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter.
###
###
| $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|$\color{darkred}{ -\frac{\text{Asf}(3,3)}{\sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{\text{Asf}(3,3)}{\sqrt{7}} }$|
^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{3}{7} \text{Apd}(3,3) }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$\color{darkred}{ \frac{3}{7} \text{Apd}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|
^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3}{7} \text{Apd}(3,3) }$|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|
^$ {Y_{0}^{(2)}} $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{2}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{33} \sqrt{5} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3) }$|
^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ -\frac{3}{7} \text{Apd}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ -\frac{\text{Asf}(3,3)}{\sqrt{7}} }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{2}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $|
^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|
^$ {Y_{2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|
^$ {Y_{3}^{(3)}} $|$\color{darkred}{ \frac{\text{Asf}(3,3)}{\sqrt{7}} }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{33} \sqrt{5} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|
###
==== Rotation matrix to symmetry adapted functions (choice is not unique) ====
###
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
###
###
| $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|
^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $|
^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|
^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|
^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|
^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|
###
==== One particle coupling on a basis of symmetry adapted functions ====
###
After rotation we find
###
###
| $ $ ^ $ \text{s} $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^
^$ \text{s} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Asf}(3,3) }$|
^$ p_y $|$\color{darkred}{ 0 }$|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{3}{7} \text{Apd}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|
^$ p_x $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{3}{7} \text{Apd}(3,3) }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|
^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ \frac{3}{7} \text{Apd}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ d_{3z^2-r^2} $|$ \frac{\text{Asd}(2,0)}{\sqrt{5}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{10}{7}} \text{Adf}(3,3)-\frac{2}{33} \sqrt{10} \text{Adf}(5,3) }$|
^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|
^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{3}{7} \text{Apd}(3,3) }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|
^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)-\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)+\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{5}{33} \sqrt{2} \text{Adf}(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{2}{7}} \text{Adf}(3,3)-\frac{5}{33} \sqrt{2} \text{Adf}(5,3) }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|
^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} \sqrt{\frac{5}{7}} \text{Adf}(3,3)-\frac{4}{33} \sqrt{5} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|
^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Asf}(3,3) }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{10}{7}} \text{Adf}(3,3)-\frac{2}{33} \sqrt{10} \text{Adf}(5,3) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $|
###
===== Coupling for a single shell =====
###
Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$.
###
###
Click on one of the subsections to expand it or
###
==== Potential for s orbitals ====
###
$$A_{k,m} = \begin{cases}
\text{Ea1p} & k=0\land m=0 \\
0 & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{Ea1p, k == 0 && m == 0}}, 0]
###
###
Akm = {{0, 0, Ea1p} }
###
###
| $ $ ^ $ {Y_{0}^{(0)}} $ ^
^$ {Y_{0}^{(0)}} $|$ \text{Ea1p} $|
###
###
| $ $ ^ $ \text{s} $ ^
^$ \text{s} $|$ \text{Ea1p} $|
###
###
| $ $ ^ $ {Y_{0}^{(0)}} $ ^
^$ \text{s} $|$ 1 $|
###
###
^ ^$$\text{Ea1p}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_0_1.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: |
###
==== Potential for p orbitals ====
###
$$A_{k,m} = \begin{cases}
\frac{1}{3} (\text{Ea2pp}+2 \text{Eep}) & k=0\land m=0 \\
\frac{5 (\text{Ea2pp}-\text{Eep})}{3} & k=2\land m=0
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{(Ea2pp + 2*Eep)/3, k == 0 && m == 0}, {(5*(Ea2pp - Eep))/3, k == 2 && m == 0}}, 0]
###
###
Akm = {{0, 0, (1/3)*(Ea2pp + (2)*(Eep))} ,
{2, 0, (5/3)*(Ea2pp + (-1)*(Eep))} }
###
###
| $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^
^$ {Y_{-1}^{(1)}} $|$ \text{Eep} $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|
^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Eep} $|
###
###
| $ $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^
^$ p_y $|$ \text{Eep} $|$ 0 $|$ 0 $|
^$ p_z $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|
^$ p_x $|$ 0 $|$ 0 $|$ \text{Eep} $|
###
###
| $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^
^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|
^$ p_z $|$ 0 $|$ 1 $|$ 0 $|
^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|
###
###
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_1_1.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} y$$ | ::: |
^ ^$$\text{Ea2pp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_1_2.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} z$$ | ::: |
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_1_3.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} x$$ | ::: |
###
==== Potential for d orbitals ====
###
$$A_{k,m} = \begin{cases}
\frac{1}{5} (\text{Ea1p}+2 (\text{Eep}+\text{Eepp})) & k=0\land m=0 \\
\text{Ea1p}-2 \text{Eep}+\text{Eepp} & k=2\land m=0 \\
0 & k\neq 4\lor m\neq 0 \\
\frac{3}{5} (3 \text{Ea1p}+\text{Eep}-4 \text{Eepp}) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{(Ea1p + 2*(Eep + Eepp))/5, k == 0 && m == 0}, {Ea1p - 2*Eep + Eepp, k == 2 && m == 0}, {0, k != 4 || m != 0}}, (3*(3*Ea1p + Eep - 4*Eepp))/5]
###
###
Akm = {{0, 0, (1/5)*(Ea1p + (2)*(Eep + Eepp))} ,
{2, 0, Ea1p + (-2)*(Eep) + Eepp} ,
{4, 0, (3/5)*((3)*(Ea1p) + Eep + (-4)*(Eepp))} }
###
###
| $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^
^$ {Y_{-2}^{(2)}} $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Ea1p} $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $|
^$ {Y_{2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|
###
###
| $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^
^$ d_{\text{xy}} $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ d_{\text{yz}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|
^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ \text{Ea1p} $|$ 0 $|$ 0 $|
^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $|
^$ d_{x^2-y^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|
###
###
| $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^
^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|
^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|
^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|
^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|
^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|
###
###
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_2_1.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x y$$ | ::: |
^ ^$$\text{Eepp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_2_2.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} y z$$ | ::: |
^ ^$$\text{Ea1p}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_2_3.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1)$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right)$$ | ::: |
^ ^$$\text{Eepp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_2_4.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x z$$ | ::: |
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_2_5.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right)$$ | ::: |
###
==== Potential for f orbitals ====
###
$$A_{k,m} = \begin{cases}
\frac{1}{7} (\text{Ea1p}+\text{Ea2p}+\text{Ea2pp}+2 \text{Eep}+2 \text{Eepp}) & k=0\land m=0 \\
-\frac{5}{28} (5 \text{Ea1p}+5 \text{Ea2p}-4 \text{Ea2pp}-6 \text{Eep}) & k=2\land m=0 \\
0 & (k\neq 6\land (k\neq 4\lor m\neq 0))\lor (m\neq -6\land m\neq 0\land m\neq 6) \\
\frac{3}{14} (3 \text{Ea1p}+3 \text{Ea2p}+2 (3 \text{Ea2pp}+\text{Eep}-7 \text{Eepp})) & k=4\land m=0 \\
\frac{13}{20} \sqrt{\frac{33}{7}} (\text{Ea1p}-\text{Ea2p}) & k=6\land (m=-6\lor m=6) \\
-\frac{13}{140} (\text{Ea1p}+\text{Ea2p}-20 \text{Ea2pp}+30 \text{Eep}-12 \text{Eepp}) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{(Ea1p + Ea2p + Ea2pp + 2*Eep + 2*Eepp)/7, k == 0 && m == 0}, {(-5*(5*Ea1p + 5*Ea2p - 4*Ea2pp - 6*Eep))/28, k == 2 && m == 0}, {0, (k != 6 && (k != 4 || m != 0)) || (m != -6 && m != 0 && m != 6)}, {(3*(3*Ea1p + 3*Ea2p + 2*(3*Ea2pp + Eep - 7*Eepp)))/14, k == 4 && m == 0}, {(13*Sqrt[33/7]*(Ea1p - Ea2p))/20, k == 6 && (m == -6 || m == 6)}}, (-13*(Ea1p + Ea2p - 20*Ea2pp + 30*Eep - 12*Eepp))/140]
###
###
Akm = {{0, 0, (1/7)*(Ea1p + Ea2p + Ea2pp + (2)*(Eep) + (2)*(Eepp))} ,
{2, 0, (-5/28)*((5)*(Ea1p) + (5)*(Ea2p) + (-4)*(Ea2pp) + (-6)*(Eep))} ,
{4, 0, (3/14)*((3)*(Ea1p) + (3)*(Ea2p) + (2)*((3)*(Ea2pp) + Eep + (-7)*(Eepp)))} ,
{6, 0, (-13/140)*(Ea1p + Ea2p + (-20)*(Ea2pp) + (30)*(Eep) + (-12)*(Eepp))} ,
{6,-6, (13/20)*((sqrt(33/7))*(Ea1p + (-1)*(Ea2p)))} ,
{6, 6, (13/20)*((sqrt(33/7))*(Ea1p + (-1)*(Ea2p)))} }
###
###
| $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ {Y_{-3}^{(3)}} $|$ \frac{\text{Ea1p}+\text{Ea2p}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ea2p}-\text{Ea1p}}{2} $|
^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{-1}^{(3)}} $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|
^$ {Y_{2}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $|
^$ {Y_{3}^{(3)}} $|$ \frac{\text{Ea2p}-\text{Ea1p}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ea1p}+\text{Ea2p}}{2} $|
###
###
| $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^
^$ f_{y\left(3x^2-y^2\right)} $|$ \text{Ea2p} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{\text{xyz}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{y\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{x\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|
^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $|
^$ f_{x\left(x^2-3y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea1p} $|
###
###
| $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ f_{y\left(3x^2-y^2\right)} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|
^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $|
^$ f_{y\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|
^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $|
^$ f_{x\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|
^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|
^$ f_{x\left(x^2-3y^2\right)} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|
###
###
^ ^$$\text{Ea2p}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_1.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \sin (3 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{4} \sqrt{\frac{35}{2 \pi }} y \left(y^2-3 x^2\right)$$ | ::: |
^ ^$$\text{Eepp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_2.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z$$ | ::: |
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_3.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{21}{2 \pi }} \sin (\theta ) (5 \cos (2 \theta )+3) \sin (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{21}{2 \pi }} y \left(5 z^2-1\right)$$ | ::: |
^ ^$$\text{Ea2pp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_4.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)$$ | ::: |
^ ^$$\text{Eep}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_5.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{21}{2 \pi }} (\sin (\theta )+5 \sin (3 \theta )) \cos (\phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{21}{2 \pi }} x \left(5 z^2-1\right)$$ | ::: |
^ ^$$\text{Eepp}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_6.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)$$ | ::: |
^ ^$$\text{Ea1p}$$ | {{:physics_chemistry:pointgroup:d3h_zx_orb_3_7.png?150}} |
|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} \sin ^3(\theta ) \cos (3 \phi )$$ | ::: |
|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{35}{2 \pi }} x \left(x^2-3 y^2\right)$$ | ::: |
###
===== Coupling between two shells =====
###
Click on one of the subsections to expand it or
###
==== Potential for s-d orbital mixing ====
###
$$A_{k,m} = \begin{cases}
0 & k\neq 2\lor m\neq 0 \\
A(2,0) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{0, k != 2 || m != 0}}, A[2, 0]]
###
###
Akm = {{2, 0, A(2,0)} }
###
###
| $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^
^$ {Y_{0}^{(0)}} $|$ 0 $|$ 0 $|$ \frac{A(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|
###
###
| $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^
^$ \text{s} $|$ 0 $|$ 0 $|$ \frac{A(2,0)}{\sqrt{5}} $|$ 0 $|$ 0 $|
###
==== Potential for s-f orbital mixing ====
###
$$A_{k,m} = \begin{cases}
0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\
-A(3,3) & k=3\land m=-3 \\
A(3,3) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != 3)}, {-A[3, 3], k == 3 && m == -3}}, A[3, 3]]
###
###
Akm = {{3,-3, (-1)*(A(3,3))} ,
{3, 3, A(3,3)} }
###
###
| $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ {Y_{0}^{(0)}} $|$ -\frac{A(3,3)}{\sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{A(3,3)}{\sqrt{7}} $|
###
###
| $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^
^$ \text{s} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\sqrt{\frac{2}{7}} A(3,3) $|
###
==== Potential for p-d orbital mixing ====
###
$$A_{k,m} = \begin{cases}
0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\
-A(3,3) & k=3\land m=-3 \\
A(3,3) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -3 && m != 3)}, {-A[3, 3], k == 3 && m == -3}}, A[3, 3]]
###
###
Akm = {{3,-3, (-1)*(A(3,3))} ,
{3, 3, A(3,3)} }
###
###
| $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^
^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{3}{7} A(3,3) $|
^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(1)}} $|$ \frac{3}{7} A(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
###
###
| $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^
^$ p_y $|$ \frac{3}{7} A(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_x $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{3}{7} A(3,3) $|
###
==== Potential for p-f orbital mixing ====
###
$$A_{k,m} = \begin{cases}
0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\
A(2,0) & k=2\land m=0 \\
A(4,0) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{0, (k != 2 && k != 4) || m != 0}, {A[2, 0], k == 2 && m == 0}}, A[4, 0]]
###
###
Akm = {{2, 0, A(2,0)} ,
{4, 0, A(4,0)} }
###
###
| $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|
###
###
| $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^
^$ p_y $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|
^$ p_x $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|
###
==== Potential for d-f orbital mixing ====
###
$$A_{k,m} = \begin{cases}
0 & (k\neq 3\land k\neq 5)\lor (m\neq -3\land m\neq 3) \\
-A(3,3) & k=3\land m=-3 \\
A(3,3) & k=3\land m=3 \\
-A(5,3) & k=5\land m=-3 \\
A(5,3) & \text{True}
\end{cases}$$
###
###
Akm[k_,m_]:=Piecewise[{{0, (k != 3 && k != 5) || (m != -3 && m != 3)}, {-A[3, 3], k == 3 && m == -3}, {A[3, 3], k == 3 && m == 3}, {-A[5, 3], k == 5 && m == -3}}, A[5, 3]]
###
###
Akm = {{3,-3, (-1)*(A(3,3))} ,
{3, 3, A(3,3)} ,
{5,-3, (-1)*(A(5,3))} ,
{5, 3, A(5,3)} }
###
###
| $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^
^$ {Y_{-2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{5}{33} \sqrt{2} A(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} A(3,3) $|$ 0 $|$ 0 $|
^$ {Y_{-1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{231} \sqrt{5} \left(11 \sqrt{7} A(3,3)+28 A(5,3)\right) $|$ 0 $|
^$ {Y_{0}^{(2)}} $|$ \frac{1}{3} \sqrt{\frac{5}{7}} A(3,3)-\frac{2}{33} \sqrt{5} A(5,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{2}{33} \sqrt{5} A(5,3)-\frac{1}{3} \sqrt{\frac{5}{7}} A(3,3) $|
^$ {Y_{1}^{(2)}} $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{5}{7}} A(3,3)+\frac{4}{33} \sqrt{5} A(5,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ {Y_{2}^{(2)}} $|$ 0 $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{2}{7}} A(3,3)-\frac{5}{33} \sqrt{2} A(5,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
###
###
| $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^
^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ \frac{5}{33} \sqrt{2} A(5,3)-\frac{1}{3} \sqrt{\frac{2}{7}} A(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ d_{\text{yz}} $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{5}{7}} A(3,3)+\frac{4}{33} \sqrt{5} A(5,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|
^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{231} \sqrt{10} \left(11 \sqrt{7} A(3,3)-14 A(5,3)\right) $|
^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{231} \sqrt{5} \left(11 \sqrt{7} A(3,3)+28 A(5,3)\right) $|$ 0 $|
^$ d_{x^2-y^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{2}{7}} A(3,3)-\frac{5}{33} \sqrt{2} A(5,3) $|$ 0 $|$ 0 $|
###
===== Table of several point groups =====
###
[[physics_chemistry:point_groups|Return to Main page on Point Groups]]
###
###
^Nonaxial groups | [[physics_chemistry:point_groups:c1|C]][[physics_chemistry:point_groups:c1|1]] | [[physics_chemistry:point_groups:cs|C]][[physics_chemistry:point_groups:cs|s]] | [[physics_chemistry:point_groups:ci|C]][[physics_chemistry:point_groups:ci|i]] | | | | |
^Cn groups | [[physics_chemistry:point_groups:c2|C]][[physics_chemistry:point_groups:c2|2]] | [[physics_chemistry:point_groups:c3|C]][[physics_chemistry:point_groups:c3|3]] | [[physics_chemistry:point_groups:c4|C]][[physics_chemistry:point_groups:c4|4]] | [[physics_chemistry:point_groups:c5|C]][[physics_chemistry:point_groups:c5|5]] | [[physics_chemistry:point_groups:c6|C]][[physics_chemistry:point_groups:c6|6]] | [[physics_chemistry:point_groups:c7|C]][[physics_chemistry:point_groups:c7|7]] | [[physics_chemistry:point_groups:c8|C]][[physics_chemistry:point_groups:c8|8]] |
^Dn groups | [[physics_chemistry:point_groups:d2|D]][[physics_chemistry:point_groups:d2|2]] | [[physics_chemistry:point_groups:d3|D]][[physics_chemistry:point_groups:d3|3]] | [[physics_chemistry:point_groups:d4|D]][[physics_chemistry:point_groups:d4|4]] | [[physics_chemistry:point_groups:d5|D]][[physics_chemistry:point_groups:d5|5]] | [[physics_chemistry:point_groups:d6|D]][[physics_chemistry:point_groups:d6|6]] | [[physics_chemistry:point_groups:d7|D]][[physics_chemistry:point_groups:d7|7]] | [[physics_chemistry:point_groups:d8|D]][[physics_chemistry:point_groups:d8|8]] |
^Cnv groups | [[physics_chemistry:point_groups:c2v|C]][[physics_chemistry:point_groups:c2v|2v]] | [[physics_chemistry:point_groups:c3v|C]][[physics_chemistry:point_groups:c3v|3v]] | [[physics_chemistry:point_groups:c4v|C]][[physics_chemistry:point_groups:c4v|4v]] | [[physics_chemistry:point_groups:c5v|C]][[physics_chemistry:point_groups:c5v|5v]] | [[physics_chemistry:point_groups:c6v|C]][[physics_chemistry:point_groups:c6v|6v]] | [[physics_chemistry:point_groups:c7v|C]][[physics_chemistry:point_groups:c7v|7v]] | [[physics_chemistry:point_groups:c8v|C]][[physics_chemistry:point_groups:c8v|8v]] |
^Cnh groups | [[physics_chemistry:point_groups:c2h|C]][[physics_chemistry:point_groups:c2h|2h]] | [[physics_chemistry:point_groups:c3h|C]][[physics_chemistry:point_groups:c3h|3h]] | [[physics_chemistry:point_groups:c4h|C]][[physics_chemistry:point_groups:c4h|4h]] | [[physics_chemistry:point_groups:c5h|C]][[physics_chemistry:point_groups:c5h|5h]] | [[physics_chemistry:point_groups:c6h|C]][[physics_chemistry:point_groups:c6h|6h]] | | |
^Dnh groups | [[physics_chemistry:point_groups:d2h|D]][[physics_chemistry:point_groups:d2h|2h]] | [[physics_chemistry:point_groups:d3h|D]][[physics_chemistry:point_groups:d3h|3h]] | [[physics_chemistry:point_groups:d4h|D]][[physics_chemistry:point_groups:d4h|4h]] | [[physics_chemistry:point_groups:d5h|D]][[physics_chemistry:point_groups:d5h|5h]] | [[physics_chemistry:point_groups:d6h|D]][[physics_chemistry:point_groups:d6h|6h]] | [[physics_chemistry:point_groups:d7h|D]][[physics_chemistry:point_groups:d7h|7h]] | [[physics_chemistry:point_groups:d8h|D]][[physics_chemistry:point_groups:d8h|8h]] |
^Dnd groups | [[physics_chemistry:point_groups:d2d|D]][[physics_chemistry:point_groups:d2d|2d]] | [[physics_chemistry:point_groups:d3d|D]][[physics_chemistry:point_groups:d3d|3d]] | [[physics_chemistry:point_groups:d4d|D]][[physics_chemistry:point_groups:d4d|4d]] | [[physics_chemistry:point_groups:d5d|D]][[physics_chemistry:point_groups:d5d|5d]] | [[physics_chemistry:point_groups:d6d|D]][[physics_chemistry:point_groups:d6d|6d]] | [[physics_chemistry:point_groups:d7d|D]][[physics_chemistry:point_groups:d7d|7d]] | [[physics_chemistry:point_groups:d8d|D]][[physics_chemistry:point_groups:d8d|8d]] |
^Sn groups | [[physics_chemistry:point_groups:S2|S]][[physics_chemistry:point_groups:S2|2]] | [[physics_chemistry:point_groups:S4|S]][[physics_chemistry:point_groups:S4|4]] | [[physics_chemistry:point_groups:S6|S]][[physics_chemistry:point_groups:S6|6]] | [[physics_chemistry:point_groups:S8|S]][[physics_chemistry:point_groups:S8|8]] | [[physics_chemistry:point_groups:S10|S]][[physics_chemistry:point_groups:S10|10]] | [[physics_chemistry:point_groups:S12|S]][[physics_chemistry:point_groups:S12|12]] | |
^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]][[physics_chemistry:point_groups:Th|h]] | [[physics_chemistry:point_groups:Td|T]][[physics_chemistry:point_groups:Td|d]] | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]][[physics_chemistry:point_groups:Oh|h]] | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]][[physics_chemistry:point_groups:Ih|h]] |
^Linear groups | [[physics_chemistry:point_groups:cinfv|C]][[physics_chemistry:point_groups:cinfv|$\infty$v]] | [[physics_chemistry:point_groups:cinfv|D]][[physics_chemistry:point_groups:dinfh|$\infty$h]] | | | | | |
###