====== NF ======
###
unsigned integer, read and write
###
###
An integer representing the number of Fermionic modes in the basis. For wavefunction //psi//, index //0// to //psi.NF-1// refers to Fermions, index //psi.NF// to //psi.NF+psi.NB-1// refers to Bosons. Changing this number changes the operator. If the new number of Fermions is smaller than the old number all modes referring to Fermions larger than //NF-1// will be removed from the determinants. The index of Bosonic modes is shifted to start at //psi.NF-1//.
###
===== Example =====
###
We can define the function:
$$
|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle,
$$
changing the number of fermions in the basis from 3 to 2 results in the new function:
$$
|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 \right)|0\rangle.
$$
Note that the later is normalized, but does not contain a fixed number of electrons.
###
==== Input ====
NF=3
NB=0
psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+I)*sqrt(1/4)}})
print(psi.NF)
psi.NF=2
print(psi)
==== Result ====
3
WaveFunction: Wave Function
QComplex = 1 (Real==0 or Complex==1)
N = 3 (Number of basis functions used to discribe psi)
NFermionic modes = 2 (Number of fermions in the one particle basis)
NBosonic modes = 0 (Number of bosons in the one particle basis)
# pre-factor +I pre-factor Determinant
1 5.000000000000E-01 0.000000000000E+00 11
2 5.000000000000E-01 0.000000000000E+00 10
3 5.000000000000E-01 5.000000000000E-01 01
===== Available properties =====
{{indexmenu>.#1}}