====== Normalize ======
###
for a wavefunction //psi// the method //Normalize()// will change the overall prefactor of the wavefunction such that $\langle \psi | \psi \rangle=1$.
###
===== Example =====
###
We can define the following function:
$$
|\psi\rangle = \left(a^{\dagger}_0 a^{\dagger}_1 + a^{\dagger}_0 a^{\dagger}_2 + (1+I) a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.
$$
after normalization it becomes
$$
|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.
$$
###
==== Input ====
NF=3
NB=0
psi = NewWavefunction(NF, NB, {{"110",1},{"101",1},{"011",(1+I)}})
print(psi)
print("The norm of psi is ",psi*psi)
psi.Normalize()
print(psi)
print("The norm of psi is ",psi*psi)
==== Result ====
WaveFunction: Wave Function
QComplex = 1 (Real==0 or Complex==1)
N = 3 (Number of basis functions used to discribe psi)
NFermionic modes = 3 (Number of fermions in the one particle basis)
NBosonic modes = 0 (Number of bosons in the one particle basis)
# pre-factor +I pre-factor Determinant
1 1.000000000000E+00 0.000000000000E+00 110
2 1.000000000000E+00 0.000000000000E+00 101
3 1.000000000000E+00 1.000000000000E+00 011
The norm of psi is 4
WaveFunction: Wave Function
QComplex = 1 (Real==0 or Complex==1)
N = 3 (Number of basis functions used to discribe psi)
NFermionic modes = 3 (Number of fermions in the one particle basis)
NBosonic modes = 0 (Number of bosons in the one particle basis)
# pre-factor +I pre-factor Determinant
1 5.000000000000E-01 0.000000000000E+00 110
2 5.000000000000E-01 0.000000000000E+00 101
3 5.000000000000E-01 5.000000000000E-01 011
The norm of psi is 1
===== Available methods =====
{{indexmenu>.#1}}