====== Conjugate ======
###
For a wavefunction //psi//, the method //psi.Conjugate()// will change the wavefunction //psi// to its complex conjugate.
###
===== Example =====
###
We can define the following function:
$$
|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.
$$
Its conjugate $\psi^*$ can be calculate with the command //psi.Conjugate()// and is equal to:
$$
|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1-I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.
$$
###
==== Input ====
NF=3
NB=0
psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+I)*sqrt(1/4)}})
print(psi)
psi.Conjugate()
print(psi)
==== Result ====
WaveFunction: Wave Function
QComplex = 1 (Real==0 or Complex==1)
N = 3 (Number of basis functions used to discribe psi)
NFermionic modes = 3 (Number of fermions in the one particle basis)
NBosonic modes = 0 (Number of bosons in the one particle basis)
# pre-factor +I pre-factor Determinant
1 5.000000000000E-01 0.000000000000E+00 110
2 5.000000000000E-01 0.000000000000E+00 101
3 5.000000000000E-01 5.000000000000E-01 011
WaveFunction: Wave Function
QComplex = 1 (Real==0 or Complex==1)
N = 3 (Number of basis functions used to discribe psi)
NFermionic modes = 3 (Number of fermions in the one particle basis)
NBosonic modes = 0 (Number of bosons in the one particle basis)
# pre-factor +I pre-factor Determinant
1 5.000000000000E-01 -0.000000000000E+00 110
2 5.000000000000E-01 -0.000000000000E+00 101
3 5.000000000000E-01 -5.000000000000E-01 011
===== Available methods =====
{{indexmenu>.#1}}