====== MeanFieldOperator ======
###
//MeanFieldOperator($O$, $\rho$)// creates the mean-field version of operator $O$ with the corresponding density matrix $\rho$.
$rho$ stores the expectation values of $a^{\dagger}_{\tau}a^{\phantom{\dagger}}_{\tau'}$, a table of dimensions $NFermion$ by $NFermion$.
Any two particle parts of the operator will be replaced in mean-field, using the Hartree-Fock approximation by:
\begin{eqnarray}
a^{\dagger}_{i}a^{\dagger}_{j}a^{\phantom{\dagger}}_{k}a^{\phantom{\dagger}}_{l} &\to&\\
\nonumber &-& a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \rangle \\
\nonumber &+& a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \rangle \\
\nonumber &+& a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \rangle \\
\nonumber &-& a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \rangle \\
\nonumber &-& \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{l} \rangle \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{k} \rangle \\
\nonumber &+& \langle a^{\dagger}_{i}a^{\phantom{\dagger}}_{k} \rangle \langle a^{\dagger}_{j}a^{\phantom{\dagger}}_{l} \rangle
\end{eqnarray}
If the option AddDFTSelfInteraction was set to true more terms are added to the Mean-Field Operator, namely
\begin{equation}
\sum_{m} U \langle a^\dagger_m a^{\phantom{\dagger}}_m \rangle a^\dagger_m a^{\phantom{\dagger}}_m
\end{equation}
where
\begin{equation}
U
=
\left(
\frac{N_{Fermion} (N_{Fermion}-1)}{2}
\right)^{-1}
\sum_{m,n}
\left(
U_{m\,n\,n\,m}
-
U_{m\,n\,m\,n}
\right)
\end{equation}
is the average interaction energy electrons have with one another.
###
===== Input =====
* $O$ : Operator
* $rho$ : Matrix (Table of Table of length $O.NF$) of doubles
* Possible options are:
* "AddDFTSelfInteraction" bool defining if the electron self-interaction is to be included. (Standard false)
===== Output =====
* $O_{MF}$ The mean-field approximated operator
===== Example =====
==== Input ====
NF = 4
op = NewOperator("Number",NF,{1},{1},{0.1+I}) + NewOperator("U",NF,{0},{1},{5}) + 3
rho = {{0.7,0.3+I,0,0},{0.3-I,0.4,0,0},{0,0,0,0},{0,0,0,0}}
print("Full Operator:")
print(op)
print("\nDensity:")
print(rho)
print("\nMeanFieldOperator:")
print( MeanFieldOperator(op, rho) )
print("\nMeanFieldOperator with electron self-interaction:")
print( MeanFieldOperator(op, rho, {{"AddDFTSelfInteraction",true}}) )
==== Result ====
Full Operator:
Operator: CrAn
QComplex = 2 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 4 (largest number of product of lader operators)
NFermionic modes = 4 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 0
QComplex = 0 (Real==0 or Complex==1)
N = 1 (number of operators of length 0)
| 3.000000000000000E+00
Operator of Length 2
QComplex = 1 (Real==0 or Complex==1)
N = 1 (number of operators of length 2)
C 1 A 1 | 1.000000000000000E-01 1.000000000000000E+00
Operator of Length 4
QComplex = 0 (Real==0 or Complex==1)
N = 1 (number of operators of length 4)
C 1 C 0 A 1 A 0 | -5.000000000000000E+00
Density:
{ { 0.7 , (0.3 + 1 I) , 0 , 0 } ,
{ (0.3 - 1 I) , 0.4 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 } }
MeanFieldOperator:
Operator:
QComplex = 0 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 4 (largest number of product of lader operators)
NFermionic modes = 4 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 0
QComplex = 0 (Real==0 or Complex==1)
N = 1 (number of operators of length 0)
| 1.255000000000000E+01
Operator of Length 2
QComplex = 1 (Real==0 or Complex==1)
N = 4 (number of operators of length 2)
C 1 A 1 | -3.400000000000000E+00 1.000000000000000E+00
C 1 A 0 | 1.500000000000000E+00 5.000000000000000E+00
C 0 A 1 | 1.500000000000000E+00 -5.000000000000000E+00
C 0 A 0 | -2.000000000000000E+00 0.000000000000000E+00
MeanFieldOperator with electron self-interaction:
Operator:
QComplex = 0 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 4 (largest number of product of lader operators)
NFermionic modes = 4 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 0
QComplex = 0 (Real==0 or Complex==1)
N = 1 (number of operators of length 0)
| 1.255000000000000E+01
Operator of Length 2
QComplex = 1 (Real==0 or Complex==1)
N = 4 (number of operators of length 2)
C 1 A 1 | -3.066666666666666E+00 1.000000000000000E+00
C 1 A 0 | 1.500000000000000E+00 5.000000000000000E+00
C 0 A 1 | 1.500000000000000E+00 -5.000000000000000E+00
C 0 A 0 | -1.416666666666667E+00 0.000000000000000E+00
===== Table of contents =====
{{indexmenu>.#1}}