====== BlockBandDiagonalize ======
###
The function //BlockBandDiagonalize()// can be used to reduce the number of basis (spin-)orbitals by making linear combinations of (spin-)orbitals, according to the tight-binding structure (hopping matrix elements) within the (spin-)orbitals. As a simple example to make the idea clear, consider the following 3-by-3 matrix:
$$ M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} $$
Now, assuming that $M$ corresponds to a tight-binding Hamiltonian defined on some basis, we can linearly combine the second and third basis orbitals, such that we get a single orbital which mix with the first orbital via the matrix M. Consider the following unitary rotation matrix:
$$ U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $$
Now, transforming the matrix $ M $ using the unitary matrix $ U $ results in:
$$ M' = U M U^{T} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $$
In the new representation, the first basis orbital only mixes with the second
The basis orbital and not with the third one.
The function //BlockBandDiagonalize()// can accept 3 types of objects as an arguments: [[documentation:language_reference:objects:tightbinding:start|Tight-binding object]], [[documentation:language_reference:objects:operator:start|Operator]], or [[documentation:language_reference:objects:matrix:start|Matrix]].
###
===== Input =====
* bla : Integer
* bla2 : Real
===== Output =====
* bla : real
===== Example =====
###
description text
###
==== Input ====
-- some example code
==== Result ====
text produced as output
===== Table of contents =====
{{indexmenu>.#1}}